scholarly journals Disruptions to the limb muscle core molecular clock coincide with changes in mitochondrial quality control following androgen depletion

2019 ◽  
Vol 317 (4) ◽  
pp. E631-E645 ◽  
Author(s):  
Michael L. Rossetti ◽  
Karyn A. Esser ◽  
Choogon Lee ◽  
Robert J. Tomko ◽  
Alexey M. Eroshkin ◽  
...  

Androgen depletion in humans leads to significant atrophy of the limb muscles. However, the pathways by which androgens regulate limb muscle mass are unclear. Our laboratory previously showed that mitochondrial degradation was related to the induction of autophagy and the degree of muscle atrophy following androgen depletion, implying that decreased mitochondrial quality contributes to muscle atrophy. To increase our understanding of androgen-sensitive pathways regulating decreased mitochondrial quality, total RNA from the tibialis anterior of sham and castrated mice was subjected to microarray analysis. Using this unbiased approach, we identified significant changes in the expression of genes that compose the core molecular clock. To assess the extent to which androgen depletion altered the limb muscle clock, the tibialis anterior muscles from sham and castrated mice were harvested every 4 h throughout a diurnal cycle. The circadian expression patterns of various core clock genes and known clock-controlled genes were disrupted by castration, with most genes exhibiting an overall reduction in phase amplitude. Given that the core clock regulates mitochondrial quality, disruption of the clock coincided with changes in the expression of genes involved with mitochondrial quality control, suggesting a novel mechanism by which androgens may regulate mitochondrial quality. These events coincided with an overall increase in mitochondrial degradation in the muscle of castrated mice and an increase in markers of global autophagy-mediated protein breakdown. In all, these data are consistent with a novel conceptual model linking androgen depletion-induced limb muscle atrophy to reduced mitochondrial quality control via disruption of the molecular clock.

Author(s):  
Justin P. Hardee ◽  
Marissa K. Caldow ◽  
Audrey S.M. Chan ◽  
Stuart K. Plenderleith ◽  
Jennifer Trieu ◽  
...  

Impaired oxidative capacity and mitochondrial function contribute to the dystrophic pathology in muscles of Duchenne muscular dystrophy (DMD) patients and in relevant mouse models of the disease. Emerging evidence suggests an association between disrupted core clock expression and mitochondrial quality control, but this has not been established in muscles lacking dystrophin. We examined the diurnal regulation of muscle core clock and mitochondrial quality control expression in dystrophin-deficient C57BL/10ScSn-Dmdmdx (mdx) mice, an established model of DMD. Male C57BL/10 (BL/10; n=18) and mdx mice (n=18) were examined every 4 hours beginning at the dark cycle. Throughout the entire light-dark cycle, extensor digitorum longus (EDL) muscles from mdx mice had decreased core clock mRNA expression (Arntl, Cry1, Cry2, Nr1d2; p<0.05) and disrupted mitochondrial quality control mRNA expression related to biogenesis (decreased; Ppargc1a, Esrra; p<0.05), fission (increased; Dnm1l; p<0.01), fusion (decreased; Opa1, Mfn1; p<0.05) and autophagy/mitophagy (decreased: Bnip3; p<0.05; increased: Becn1; p<0.05). Cosinor analysis revealed a decrease in the rhythmicity parameters mesor and amplitude for Arntl, Cry1, Cry2, Per2, and Nr1d1 (p<0.001) in mdx mice. Diurnal oscillations in Esrra, Sirt1, Map1lc3b and Sqstm1 were absent in mdx mice, along with decreased mesor and amplitude of Ppargc1a mRNA expression (p<0.01). The expression of proteins involved in mitochondrial biogenesis (decreased: PPARGC1A, p<0.05) and autophagy/mitophagy (increased: MAP1LC3BII, SQSTM1, BNIP3; p<0.05) were also dysregulated in tibialis anterior muscles of mdx mice. These findings suggest that dystrophin deficiency in mdx mice impairs the regulation of the core clock and mitochondrial quality control, with relevance to DMD and related disorders.


2019 ◽  
Vol 20 (11) ◽  
pp. 2772 ◽  
Author(s):  
Consiglia Pacelli ◽  
Giovannina Rotundo ◽  
Lucia Lecce ◽  
Marta Menga ◽  
Eris Bidollari ◽  
...  

Growing evidence highlights a tight connection between circadian rhythms, molecular clockworks, and mitochondrial function. In particular, mitochondrial quality control and bioenergetics have been proven to undergo circadian oscillations driven by core clock genes. Parkinson’s disease (PD) is a chronic neurodegenerative disease characterized by a selective loss of dopaminergic neurons. Almost half of the autosomal recessive forms of juvenile parkinsonism have been associated with mutations in the PARK2 gene coding for parkin, shown to be involved in mitophagy-mediated mitochondrial quality control. The aim of this study was to investigate, in fibroblasts from genetic PD patients carrying parkin mutations, the interplay between mitochondrial bioenergetics and the cell autonomous circadian clock. Using two different in vitro synchronization protocols, we demonstrated that normal fibroblasts displayed rhythmic oscillations of both mitochondrial respiration and glycolytic activity. Conversely, in fibroblasts obtained from PD patients, a severe damping of the bioenergetic oscillatory patterns was observed. Analysis of the core clock genes showed deregulation of their expression patterns in PD fibroblasts, which was confirmed in induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) derived thereof. The results from this study support a reciprocal interplay between the clockwork machinery and mitochondrial energy metabolism, point to a parkin-dependent mechanism of regulation, and unveil a hitherto unappreciated level of complexity in the pathophysiology of PD and eventually other neurodegenerative diseases.


2018 ◽  
Vol 62 (9) ◽  
pp. 1700941 ◽  
Author(s):  
Dongtao Wang ◽  
Huili Sun ◽  
Gaofeng Song ◽  
Yajun Yang ◽  
Xiaohu Zou ◽  
...  

2020 ◽  
Vol 21 (10) ◽  
pp. 3691
Author(s):  
Christiane Deval ◽  
Julie Calonne ◽  
Cécile Coudy-Gandilhon ◽  
Emilie Vazeille ◽  
Daniel Bechet ◽  
...  

Mitochondria alterations are a classical feature of muscle immobilization, and autophagy is required for the elimination of deficient mitochondria (mitophagy) and the maintenance of muscle mass. We focused on the regulation of mitochondrial quality control during immobilization and remobilization in rat gastrocnemius (GA) and tibialis anterior (TA) muscles, which have very different atrophy and recovery kinetics. We studied mitochondrial biogenesis, dynamic, movement along microtubules, and addressing to autophagy. Our data indicated that mitochondria quality control adapted differently to immobilization and remobilization in GA and TA muscles. Data showed i) a disruption of mitochondria dynamic that occurred earlier in the immobilized TA, ii) an overriding role of mitophagy that involved Parkin-dependent and/or independent processes during immobilization in the GA and during remobilization in the TA, and iii) increased mitochondria biogenesis during remobilization in both muscles. This strongly emphasized the need to consider several muscle groups to study the mechanisms involved in muscle atrophy and their ability to recover, in order to provide broad and/or specific clues for the development of strategies to maintain muscle mass and improve the health and quality of life of patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenliang Zhang ◽  
Baiyang You ◽  
Dake Qi ◽  
Ling Qiu ◽  
Jeffrey W. Ripley-Gonzalez ◽  
...  

AbstractObesity induces skeletal muscle dysfunction. The pathogenesis of which appears to substantially involve mitochondrial dysfunction, arising from impaired quality control. Exercise is a major therapeutic strategy against muscle dysfunction. Trimetazidine, a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, the effects of Trimetazidine on regulating skeletal muscle function are largely unknown. Our present study used cell culture and obese mice models to test a novel hypothesis that Trimetazidine could improve muscle atrophy with similar results to exercise. In C2C12 cells, high palmitic acid-induced atrophy and mitochondrial dysfunction, which could be reversed by the treatment of Trimetazidine. In our animal models, with high-fat diet-induced obesity associated with skeletal muscle atrophy, Trimetazidine prevented muscle dysfunction, corrected metabolic abnormalities, and improved mitochondrial quality control and mitochondrial functions similarly to exercise. Thus, our study suggests that Trimetazidine successfully mimics exercise to enhance mitochondrial quality control leading to improved high-fat diet-induced muscle dysfunction.


2018 ◽  
Vol 62 (9) ◽  
pp. 1870063
Author(s):  
Dongtao Wang ◽  
Huili Sun ◽  
Gaofeng Song ◽  
Yajun Yang ◽  
Xiaohu Zou ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongtao Wang ◽  
Jianping Chen ◽  
Xinhui Liu ◽  
Ping Zheng ◽  
Gaofeng Song ◽  
...  

Editor's Note: this Article has been retracted; the Retraction Note is available at https://doi.org/10.1038/s41598-021-91869-x.


2021 ◽  
Author(s):  
Joanne L Usher ◽  
Juliette J Lee ◽  
Alvaro Sanchez-Martinez ◽  
Alexander J Whitworth

Parkinson's disease-related proteins, PINK1 and parkin, act in a common pathway to maintain mitochondrial quality control. While the PINK1-parkin pathway can promote autophagic mitochondrial turnover (mitophagy) in cell culture, recent studies have questioned whether they contribute to mitophagy in vivo, and alternative PINK1- and parkin-dependent mitochondrial quality control pathways have been proposed. To determine the mechanisms by which the Pink1-parkin pathway operates in vivo, we developed methods to detect Ser65-phosphorylated ubiquitin (pS65-Ub) in Drosophila. Exposure to the oxidant paraquat led to robust, Pink1-dependent pS65-Ub production. Surprisingly, parkin-null flies displayed strikingly elevated basal levels of pS65-Ub, suggestive of disrupted flux through the Pink1-parkin pathway. Depletion of the core autophagy proteins Atg1, Atg5 and Atg8a did not cause pS65-Ub accumulation to the same extent as loss of parkin, and overexpression of parkin was able to reduce both basal and paraquat-induced pS65-Ub levels in an Atg5-null background. Taken together, these results suggest that the Pink1-parkin pathway is able to promote mitochondrial turnover independently of canonical autophagy in vivo.


Sign in / Sign up

Export Citation Format

Share Document