scholarly journals Determining pancreatic β-cell compensation for changing insulin sensitivity using an oral glucose tolerance test

2014 ◽  
Vol 307 (9) ◽  
pp. E822-E829 ◽  
Author(s):  
Thomas P. J. Solomon ◽  
Steven K. Malin ◽  
Kristian Karstoft ◽  
Sine H. Knudsen ◽  
Jacob M. Haus ◽  
...  

Plasma glucose, insulin, and C-peptide responses during an OGTT are informative for both research and clinical practice in type 2 diabetes. The aim of this study was to use such information to determine insulin sensitivity and insulin secretion so as to calculate an oral glucose disposition index (DIOGTT) that is a measure of pancreatic β-cell insulin secretory compensation for changing insulin sensitivity. We conducted an observational study of n = 187 subjects, representing the entire glucose tolerance continuum from normal glucose tolerance to type 2 diabetes. OGTT-derived insulin sensitivity (SI OGTT) was calculated using a novel multiple-regression model derived from insulin sensitivity measured by hyperinsulinemic euglycemic clamp as the independent variable. We also validated the novel SI OGTT in n = 40 subjects from an independent data set. Plasma C-peptide responses during OGTT were used to determine oral glucose-stimulated insulin secretion (GSISOGTT), and DIOGTT was calculated as the product of SI OGTT and GSISOGTT. Our novel SI OGTT showed high agreement with clamp-derived insulin sensitivity (typical error = +3.6%; r = 0.69, P < 0.0001) and that insulin sensitivity was lowest in subjects with impaired glucose tolerance and type 2 diabetes. GSISOGTT demonstrated a significant inverse relationship with SI OGTT. GSISOGTT was lowest in normal glucose-tolerant subjects and greatest in those with impaired glucose tolerance. DIOGTT was sequentially lower with advancing glucose intolerance. We hereby derive and validate a novel OGTT-derived measurement of insulin sensitivity across the entire glucose tolerance continuum and demonstrate that β-cell compensation for changing insulin sensitivity can be readily calculated from clinical variables collected during OGTT.

2015 ◽  
Vol 308 (6) ◽  
pp. E535-E544 ◽  
Author(s):  
Christoffer Martinussen ◽  
Kirstine N. Bojsen-Møller ◽  
Carsten Dirksen ◽  
Siv H. Jacobsen ◽  
Nils B. Jørgensen ◽  
...  

Roux-en-Y gastric bypass surgery (RYGB) in patients with type 2 diabetes often leads to early disease remission, and it is unknown to what extent this involves improved pancreatic β-cell function per se and/or enhanced insulin- and non-insulin-mediated glucose disposal (glucose effectiveness). We studied 30 obese patients, including 10 with type 2 diabetes, 8 with impaired glucose tolerance, and 12 with normal glucose tolerance before, 1 wk, and 3 mo after RYGB, using an intravenous glucose tolerance test (IVGTT) to estimate first-phase insulin response, insulin sensitivity (Si), and glucose effectiveness with Bergman's minimal model. In the fasting state, insulin sensitivity was estimated by HOMA-S and β-cell function by HOMA-β. Moreover, mixed-meal tests and oral GTTs were performed. In patients with type 2 diabetes, glucose levels normalized after RYGB, first-phase insulin secretion in response to iv glucose increased twofold, and HOMA-β already improved 1 wk postoperatively, with further enhancements at 3 mo. Insulin sensitivity increased in the liver (HOMA-S) at 1 wk and at 3 mo in peripheral tissues (Si), whereas glucose effectiveness did not improve significantly. During oral testing, GLP-1 responses and insulin secretion increased regardless of glucose tolerance. Therefore, in addition to increased insulin sensitivity and exaggerated postprandial GLP-1 levels, diabetes remission after RYGB involves early improvement of pancreatic β-cell function per se, reflected in enhanced first-phase insulin secretion to iv glucose and increased HOMA-β. A major role for improved glucose effectiveness after RYGB was not supported by this study.


2000 ◽  
pp. 681-686 ◽  
Author(s):  
AE Pontiroli ◽  
LD Monti ◽  
S Costa ◽  
PE Sandoli ◽  
A Pizzini ◽  
...  

OBJECTIVES: To evaluate the frequency of impaired glucose tolerance (IGT) and of Type 2 diabetes mellitus (Type 2 DM) in siblings of patients with Type 2 DM, and to assess insulin release and insulin sensitivity in siblings with normal glucose tolerance (NGT), compared with NGT spouses of probands without family history of Type 2 DM. DESIGN AND METHODS: We evaluated 87 families including 103 Type 2 DM patients (87 probands), and we carried out an oral glucose tolerance test (OGTT) in 130 siblings and in 60 spouses. Among NGT subjects, 12 siblings and 16 spouses underwent a low-dose insulin-glucose infusion test (LDIGIT) to evaluate C-peptide release and insulin sensitivity. RESULTS: After the OGTT, 24 siblings were classified as having Type 2 DM, 31 as IGT, and only 14 spouses as IGT (P=0.0012 vs siblings). NGT siblings (n=75) showed higher insulin levels at 120 min than NGT spouses (n=46) at OGTT, in spite of identical blood glucose levels; at LDIGIT, NGT siblings secreted more C-peptide and showed a lower insulin sensitivity than NGT spouses. CONCLUSIONS: These data indicate that middle-aged siblings of probands with Type 2 DM have a high frequency of IGT and Type 2 DM, and that NGT siblings have increased insulin resistance and increased insulin secretion when compared with adequate controls.


2015 ◽  
Vol 100 (2) ◽  
pp. 707-716 ◽  
Author(s):  
Kristine Færch ◽  
Nanna B. Johansen ◽  
Daniel R. Witte ◽  
Torsten Lauritzen ◽  
Marit E. Jørgensen ◽  
...  

Abstract Context: There is little overlap between diabetes diagnosed by glycated hemoglobin (HbA1c) and blood glucose, and it is unclear which pathophysiological defects are captured when using HbA1c for diagnosis. Objective: We examined and compared the relationship between insulin sensitivity and β-cell function in different subphenotypes of prediabetes and type 2 diabetes (T2D). Design, Setting, and Participants: A cross-sectional analysis of the Danish ADDITION-PRO study was performed (n = 1713). Participants without known diabetes were classified into subgroups of prediabetes and T2D based on fasting or 2-hour glucose criteria or HbA1c. Insulin sensitivity and insulin release were determined from glucose and insulin concentrations during the oral glucose tolerance test, and disposition indices were calculated. Results: Individuals with prediabetes or T2D diagnosed by fasting glucose had lower absolute insulin release (P ≤ .01) and higher insulin sensitivity in response to glucose intake (P ≤ .01) but a similar disposition index (P ≥ .36), compared with individuals with elevated 2-hour glucose concentrations. Individuals with HbA1c-defined T2D or prediabetes had a mixture of the pathophysiological defects observed in the glucose-defined subgroups, and individuals with normoglycemia by HbA1c had worse pathophysiological abnormalities than individuals with normoglycemia by the glucose criteria. Conclusions: On average, the diagnostic HbA1c criteria for diabetes and prediabetes identified individuals with a mixture of the pathophysiological characteristics found when using the glucose criteria, but the diversity and pathophysiology captured by the oral glucose tolerance test cannot be captured when applying the more simple HbA1c criteria. Whether the disease progression and prognosis will differ in individuals diagnosed by fasting glucose, 2-hour glucose, or HbA1c should be examined in longitudinal studies.


2020 ◽  
Vol 16 (7) ◽  
pp. 699-715 ◽  
Author(s):  
Georgios S. Papaetis

Background: Prediabetes is defined as a state of glucose metabolism between normal glucose tolerance and type 2 diabetes. Continuous β-cell failure and death are the reasons for the evolution from normal glucose tolerance to prediabetes and finally type 2 diabetes. Introduction: The necessity of new therapeutic approaches in order to prevent or delay the development of type 2 diabetes is obligatory. Liraglutide, a long-acting GLP-1 receptor agonist, has 97% homology for native GLP-1. Identification of the trophic and antiapoptotic properties of liraglutide in preclinical studies, together with evidence of sustained β-cell function longevity during its administration in type 2 diabetes individuals, indicated its earliest possible administration during this disease, or even before its development, so as to postpone or delay its onset. Methods: Pubmed and Google databases have been thoroughly searched and relevant studies were selected. Results: This paper explores the current evidence of liraglutide administration both in humans and animal models with prediabetes. Also, it investigates the safety profile of liraglutide treatment and its future role to postpone or delay the evolution of type 2 diabetes. Conclusion: Liralgutide remains a valuable tool in our therapeutic armamentarium for individuals who are overweight or obese and have prediabetes. Future well designed studies will give valuable information that will help clinicians to stratify individuals who will derive the most benefit from this agent, achieving targeted therapeutic strategies.


2021 ◽  
pp. 153537022110094
Author(s):  
Ibiye Owei ◽  
Nkiru Umekwe ◽  
Frankie Stentz ◽  
Jim Wan ◽  
Sam Dagogo-Jack

The ability to predict prediabetes, which affects ∼90 million adults in the US and ∼400 million adults worldwide, would be valuable to public health. Acylcarnitines, fatty acid metabolites, have been associated with type 2 diabetes risk in cross-sectional studies of mostly Caucasian subjects, but prospective studies on their link to prediabetes in diverse populations are lacking. Here, we determined the association of plasma acylcarnitines with incident prediabetes in African Americans and European Americans enrolled in a prospective study. We analyzed 45 acylcarnitines in baseline plasma samples from 70 adults (35 African-American, 35 European-American) with incident prediabetes (progressors) and 70 matched controls (non-progressors) during 5.5-year (mean 2.6 years) follow-up in the Pathobiology of Prediabetes in a Biracial Cohort (POP-ABC) study. Incident prediabetes (impaired fasting glucose/impaired glucose tolerance) was confirmed with OGTT. We measured acylcarnitines using tandem mass spectrometry, insulin sensitivity by hyperinsulinemic euglycemic clamp, and insulin secretion using intravenous glucose tolerance test. The results showed that progressors and non-progressors during POP-ABC study follow-up were concordant for 36 acylcarnitines and discordant for nine others. In logistic regression models, beta-hydroxy butyryl carnitine (C4-OH), 3-hydroxy-isovaleryl carnitine/malonyl carnitine (C5-OH/C3-DC), and octenoyl carnitine (C8:1) were the only significant predictors of incident prediabetes. The combined cut-off plasma levels of <0.03 micromol/L for C4-OH, <0.03 micromol/L for C5-OH/C3-DC, and >0.25 micromol/L for C8:1 acylcarnitines predicted incident prediabetes with 81.9% sensitivity and 65.2% specificity. Thus, circulating levels of one medium-chain and two short-chain acylcarnitines may be sensitive biomarkers for the risk of incident prediabetes among initially normoglycemic individuals with parental history of type 2 diabetes.


2007 ◽  
Vol 292 (6) ◽  
pp. E1775-E1781 ◽  
Author(s):  
Kenneth Cusi ◽  
Sangeeta Kashyap ◽  
Amalia Gastaldelli ◽  
Mandeep Bajaj ◽  
Eugenio Cersosimo

Elevated plasma FFA cause β-cell lipotoxicity and impair insulin secretion in nondiabetic subjects predisposed to type 2 diabetes mellitus [T2DM; i.e., with a strong family history of T2DM (FH+)] but not in nondiabetic subjects without a family history of T2DM. To determine whether lowering plasma FFA with acipimox, an antilipolytic nicotinic acid derivative, may enhance insulin secretion, nine FH+ volunteers were admitted twice and received in random order either acipimox or placebo (double-blind) for 48 h. Plasma glucose/insulin/C-peptide concentrations were measured from 0800 to 2400. On day 3, insulin secretion rates (ISRs) were assessed during a +125 mg/dl hyperglycemic clamp. Acipimox reduced 48-h plasma FFA by 36% ( P < 0.001) and increased the plasma C-peptide relative to the plasma glucose concentration or ΔC-peptide/Δglucose AUC (+177%, P = 0.02), an index of improved β-cell function. Acipimox improved insulin sensitivity (M/I) 26.1 ± 5% ( P < 0.04). First- (+19 ± 6%, P = 0.1) and second-phase (+31 ± 6%, P = 0.05) ISRs during the hyperglycemic clamp also improved. This was particularly evident when examined relative to the prevailing insulin resistance [1/(M/I)], as both first- and second-phase ISR markedly increased by 29 ± 7 ( P < 0.05) and 41 ± 8% ( P = 0.02). There was an inverse correlation between fasting FFA and first-phase ISR ( r2 = 0.31, P < 0.02) and acute (2–4 min) glucose-induced insulin release after acipimox ( r2 =0.52, P < 0.04). In this proof-of-concept study in FH+ individuals predisposed to T2DM, a 48-h reduction of plasma FFA improves day-long meal and glucose-stimulated insulin secretion. These results provide additional evidence for the important role that plasma FFA play regarding insulin secretion in FH+ subjects predisposed to T2DM.


2022 ◽  
Author(s):  
Marta Garaulet ◽  
Jesus Lopez-Minguez ◽  
Hassan S Dashti ◽  
Céline Vetter ◽  
Antonio Miguel Hernández-Martínez ◽  
...  

<strong>Objective: </strong>We tested whether the concurrence of food intake and elevated concentration of endogenous melatonin, as occurs in late eating, results in impaired glucose control, in particular in carriers of the type 2 diabetes-associated G allele in the melatonin-receptor-1-b gene (<i>MTNR1B</i>).<strong> </strong> <p><strong>Research Design and Methods:</strong> In a Spanish natural late eating population, a randomized, cross-over study design was performed, following an 8-h fast. Each participant <strong>(n=845) </strong>underwent two evening 2-h 75g oral glucose tolerance tests (OGTT): an early condition scheduled 4 hours prior to habitual bedtime <strong>(“early dinner-timing”)</strong>, and a late condition scheduled 1 hour prior to habitual bedtime <strong>(“late dinner-timing”)</strong>, simulating an early and a late dinner timing, respectively.<strong> </strong>Differences in postprandial glucose and insulin responses were determined using incremental area under the curve (AUC) calculated by the trapezoidal method between <strong>early and late dinner-timing.</strong><strong></strong></p> <p><strong>Results:</strong> <strong>Melatonin serum levels were </strong>3.5-fold <strong>higher in the late <i>vs. </i>early condition, with late dinner-timing resulting in </strong>6.7% <strong>lower insulin</strong> <strong>area-under-the-curve (AUC) and </strong>8.3%<strong> higher glucose</strong> <strong>AUC. In the late condition<i> MTNR1B</i> G-allele carriers had lower glucose tolerance than non-carriers. Genotype differences in glucose tolerance were attributed to reductions in </strong>β-cell <strong>function (<i>P<sub>int</sub></i><sub> </sub>AUCgluc=0.009, <i>P<sub>int</sub></i><sub> </sub>CIR=0.022, <i>P<sub>int </sub></i>DI=0.018).</strong></p> <p><strong>Conclusions:</strong> <strong>Concurrently high endogenous melatonin and carbohydrate intake, as typical for late eating, impair glucose tolerance, especially in <i>MTNR1B</i> G-risk-allele carriers<i>, </i>attributable to insulin secretion defects.</strong></p>


Author(s):  
Nicole Sheanon ◽  
Deborah Elder ◽  
Jane Khoury ◽  
Lori Casnellie ◽  
Iris Gutmark-Little ◽  
...  

Intro: Adult women with Turner syndrome (TS) have a high prevalence of diabetes and β-cell dysfunction that increases morbidity and mortality, but, it is unknown if there is β-cell dysfunction present in youth with TS. This study aimed to determine the prevalence of β-cell dysfunction in youth with TS and the impact of traditional therapies on insulin sensitivity and insulin secretion. Methods: Cross-sectional, observational study recruited 60 girls with TS and 60 healthy controls (HC) matched on pubertal status. Each subject had a history, physical exam and oral glucose tolerance test (OGTT). Oral glucose and c-peptide minimal modeling was used to determine β-cell function. Results: Twenty-one TS girls (35%) met criteria for pre-diabetes. Impaired fasting glucose (IFG) was present in 18% of girls with TS and 2% HC (p-value = 0.0003). Impaired glucose tolerance (IGT) was present in 23% of TS girls and 0% HC (p-value < 0.001). The HbA1c was not different between TS and HC (median 5%, p= 0.42). Youth with TS had significant reductions in insulin sensitivity (SI), β-cell responsivity (Φ), and disposition index (DI) compared to HC. These differences remained significant when controlling for BMI z-score (p-values: 0.0006, 0.002, <0.0001 for SI, Φtotal, DI, respectively). Conclusions: β-cell dysfunction is present in youth with TS compared to controls. The presence of both reduced insulin secretion and insulin sensitivity suggest a unique TS-related glycemic phenotype. Based on the data from this study, we strongly suggest that providers employ serial OGTT to screen for glucose abnormalities in TS youth.


Sign in / Sign up

Export Citation Format

Share Document