scholarly journals Interplay of Dinner Timing and MTNR1B Type 2 Diabetes Risk Variant on Glucose Tolerance and Insulin Secretion: A Randomized Crossover Trial

2022 ◽  
Author(s):  
Marta Garaulet ◽  
Jesus Lopez-Minguez ◽  
Hassan S Dashti ◽  
Céline Vetter ◽  
Antonio Miguel Hernández-Martínez ◽  
...  

<strong>Objective: </strong>We tested whether the concurrence of food intake and elevated concentration of endogenous melatonin, as occurs in late eating, results in impaired glucose control, in particular in carriers of the type 2 diabetes-associated G allele in the melatonin-receptor-1-b gene (<i>MTNR1B</i>).<strong> </strong> <p><strong>Research Design and Methods:</strong> In a Spanish natural late eating population, a randomized, cross-over study design was performed, following an 8-h fast. Each participant <strong>(n=845) </strong>underwent two evening 2-h 75g oral glucose tolerance tests (OGTT): an early condition scheduled 4 hours prior to habitual bedtime <strong>(“early dinner-timing”)</strong>, and a late condition scheduled 1 hour prior to habitual bedtime <strong>(“late dinner-timing”)</strong>, simulating an early and a late dinner timing, respectively.<strong> </strong>Differences in postprandial glucose and insulin responses were determined using incremental area under the curve (AUC) calculated by the trapezoidal method between <strong>early and late dinner-timing.</strong><strong></strong></p> <p><strong>Results:</strong> <strong>Melatonin serum levels were </strong>3.5-fold <strong>higher in the late <i>vs. </i>early condition, with late dinner-timing resulting in </strong>6.7% <strong>lower insulin</strong> <strong>area-under-the-curve (AUC) and </strong>8.3%<strong> higher glucose</strong> <strong>AUC. In the late condition<i> MTNR1B</i> G-allele carriers had lower glucose tolerance than non-carriers. Genotype differences in glucose tolerance were attributed to reductions in </strong>β-cell <strong>function (<i>P<sub>int</sub></i><sub> </sub>AUCgluc=0.009, <i>P<sub>int</sub></i><sub> </sub>CIR=0.022, <i>P<sub>int </sub></i>DI=0.018).</strong></p> <p><strong>Conclusions:</strong> <strong>Concurrently high endogenous melatonin and carbohydrate intake, as typical for late eating, impair glucose tolerance, especially in <i>MTNR1B</i> G-risk-allele carriers<i>, </i>attributable to insulin secretion defects.</strong></p>

2022 ◽  
Author(s):  
Marta Garaulet ◽  
Jesus Lopez-Minguez ◽  
Hassan S Dashti ◽  
Céline Vetter ◽  
Antonio Miguel Hernández-Martínez ◽  
...  

<strong>Objective: </strong>We tested whether the concurrence of food intake and elevated concentration of endogenous melatonin, as occurs in late eating, results in impaired glucose control, in particular in carriers of the type 2 diabetes-associated G allele in the melatonin-receptor-1-b gene (<i>MTNR1B</i>).<strong> </strong> <p><strong>Research Design and Methods:</strong> In a Spanish natural late eating population, a randomized, cross-over study design was performed, following an 8-h fast. Each participant <strong>(n=845) </strong>underwent two evening 2-h 75g oral glucose tolerance tests (OGTT): an early condition scheduled 4 hours prior to habitual bedtime <strong>(“early dinner-timing”)</strong>, and a late condition scheduled 1 hour prior to habitual bedtime <strong>(“late dinner-timing”)</strong>, simulating an early and a late dinner timing, respectively.<strong> </strong>Differences in postprandial glucose and insulin responses were determined using incremental area under the curve (AUC) calculated by the trapezoidal method between <strong>early and late dinner-timing.</strong><strong></strong></p> <p><strong>Results:</strong> <strong>Melatonin serum levels were </strong>3.5-fold <strong>higher in the late <i>vs. </i>early condition, with late dinner-timing resulting in </strong>6.7% <strong>lower insulin</strong> <strong>area-under-the-curve (AUC) and </strong>8.3%<strong> higher glucose</strong> <strong>AUC. In the late condition<i> MTNR1B</i> G-allele carriers had lower glucose tolerance than non-carriers. Genotype differences in glucose tolerance were attributed to reductions in </strong>β-cell <strong>function (<i>P<sub>int</sub></i><sub> </sub>AUCgluc=0.009, <i>P<sub>int</sub></i><sub> </sub>CIR=0.022, <i>P<sub>int </sub></i>DI=0.018).</strong></p> <p><strong>Conclusions:</strong> <strong>Concurrently high endogenous melatonin and carbohydrate intake, as typical for late eating, impair glucose tolerance, especially in <i>MTNR1B</i> G-risk-allele carriers<i>, </i>attributable to insulin secretion defects.</strong></p>


Diabetes Care ◽  
2022 ◽  
Author(s):  
Marta Garaulet ◽  
Jesus Lopez-Minguez ◽  
Hassan S. Dashti ◽  
Céline Vetter ◽  
Antonio Miguel Hernández-Martínez ◽  
...  

OBJECTIVE We tested whether the concurrence of food intake and elevated concentration of endogenous melatonin, as occurs in late eating, results in impaired glucose control, in particular in carriers of the type 2 diabetes–associated G allele in the melatonin receptor-1b gene (MTNR1B). RESEARCH DESIGN AND METHODS In a Spanish natural late-eating population, a randomized, crossover study was performed. Each participant (n = 845) underwent two evening 2-h 75-g oral glucose tolerance tests following an 8-h fast: an early condition scheduled 4 h prior to habitual bedtime (“early dinner timing”) and a late condition scheduled 1 h prior to habitual bedtime (“late dinner timing”), simulating an early and a late dinner timing, respectively. Differences in postprandial glucose and insulin responsesbetween early and late dinner timing were determined using incremental area under the curve (AUC) calculated by the trapezoidal method. RESULTS Melatonin serum levels were 3.5-fold higher in the late versus early condition, with late dinner timing resulting in 6.7% lower insulin AUC and 8.3% higher glucose AUC. In the late condition, MTNR1B G-allele carriers had lower glucose tolerance than noncarriers. Genotype differences in glucose tolerance were attributed to reductions in β-cell function (P for interaction, Pint glucose area under the curve = 0.009, Pint corrected insulin response = 0.022, and Pint Disposition Index = 0.018). CONCLUSIONS Concurrently high endogenous melatonin and carbohydrate intake, as typical for late eating, impairs glucose tolerance, especially in MTNR1B G-risk allele carriers, attributable to insulin secretion defects.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1275-1275
Author(s):  
Magdalena Sevilla ◽  
Donaji Gomez-Velasco ◽  
Ivette Cruz-Bautista ◽  
Laura Lazaro-Carrera ◽  
Paloma Almeda-Valdes ◽  
...  

Abstract Objectives A haplotype in SLC16A11 is associated with decreased insulin action, and risk for type 2 diabetes (T2D) in Mexicans. We aim to determine the impact of the risk haplotype on SLC16A11 on early therapeutic responses in treatments to prevent T2D. Methods We recruited subjects with at least one prediabetes criteria according to the American Diabetes Association, and body mass index 25–45 kg/m2. Subjects were randomized in two groups: lifestyle intervention (LSI): hypocaloric diet, 25 kcal/kg of ideal weight, 45% of the total intake of carbohydrates, 30% lipids and 15% protein sources + physical activity (&gt;150 min medium intensity per week), or LSI + metformin (750 mg prolonged release twice a day). Interventions were prescribed by standardized dietitians. The goal was to achieve &gt;3% weight loss. We evaluated the early treatment response in a follow-up period of 12 weeks with intermediate visits each 3 weeks to reinforce knowledge and treatment goals. Evaluations (baseline and post-treatment) included an oral glucose tolerance test (OGTT), and dual-energy X-ray absorptiometry. Adherence to treatment was measured trough electronic recordings. Participants were genotyped for the risk allele rs13342232. Researchers remained blinded to the genotype results. The effects of the risk haplotype were evaluated with linear and logistic regressions adjusted by age, sex, and baseline body fat %. Results We evaluated 61 subjects, 30 carriers, and 31 non-carriers. Most of participants (57%) achieved ≥3% weight loss. The LSI + metformin treatment increased in carriers, 2 times OR 3 IC95% (1.07 – 8.6) (P = 0.04) the probability to reach the ≥3% weight loss goal compared with LSI and non-carriers. In the same treatment, carriers had a greater decrease in the total and incremental area under the curve of insulin in the OGTT IC95% (−1.75 −0.11) (P = 0.02) compared with non-carriers and LSI. Carriers also had higher decrease in postprandial glucose compared with non-carriers regardless of treatment −12.63 + 30.38 vs 0.71 30.24 (P = 0.02). Conclusions After 12 weeks of treatment, carriers with prediabetes showed a higher probability achieve weight loss and to improve insulin secretion with metformin. Regardless of the treatment, carriers were prone to improve postprandial glucose. Funding Sources Miguel Aleman Medical Research Award.


Diabetes Care ◽  
2000 ◽  
Vol 23 (9) ◽  
pp. 1440-1441 ◽  
Author(s):  
M. Stumvoll ◽  
A. Mitrakou ◽  
W. Pimenta ◽  
T. Jenssen ◽  
H. Yki-Jarvinen ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hui Wu ◽  
Michael Wu ◽  
Yi Chen ◽  
Carolyn A. Allan ◽  
David J. Phillips ◽  
...  

Aims. Activins A and B, and their binding protein, follistatin, regulate glucose metabolism and inflammation. Consequently, their role in type 2 diabetes (T2D) was examined.Methods. Blood was taken from fasted participants (34 males; 58 females; 50–75 years) with diabetes or during an oral glucose tolerance test (OGTT). Clinical parameters were assessed, and blood assayed for activins, follistatin, and C-reactive protein.Results. Serum levels of activin A (93.3 ± 27.0 pg/mL, mean ± SD), B (81.8 ± 30.8 pg/mL), or follistatin (6.52 ± 3.15 ng/mL) were not different (P>0.05) between subjects with normal OGTT (n=39), impaired glucose tolerance and/or fasting glucose (n=17), or T2D (n=36). However, activin A and/or activin B were positively correlated with parameters of insulin resistance and T2D, including fasting glucose (P<0.001), fasting insulin (P=0.02), glycated hemoglobin (P=0.003), and homeostasis model assessment of insulin resistance (HOMA-IR;P<0.001). Follistatin was positively correlated with HOMA-IR alone (P=0.01).Conclusions. These data indicate that serum measurements of activin A, B, or follistatin cannot discriminate risk for T2D in individual patients, but the activins display a positive relationship with clinical parameters of the disease.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2928
Author(s):  
Amelia K. Fotheringham ◽  
Jonatan I. Bagger ◽  
Danielle J. Borg ◽  
Domenica A. McCarthy ◽  
Jens J. Holst ◽  
...  

Postprandial glucose excursions are postulated to increase the risk for diabetes complications via the production of advanced glycation end products (AGEs). The soluble receptor of AGEs (sRAGE) likely acts as a decoy receptor, mopping up AGEs, diminishing their capacity for pro-inflammatory and pro-apoptotic signaling. Recent evidence suggests that AGEs and soluble receptor for AGEs (sRAGE) may be altered under postprandial and fasting conditions. Here, we investigated the effects of increasing oral glucose loads during oral glucose tolerance tests (OGTT) and matched isoglycaemic intravenous (i.v.) glucose infusions (IIGI) on circulating concentrations of sRAGE. Samples from eight individuals with type 2 diabetes and eight age-, gender-, and body mass index (BMI)-matched controls, all of whom underwent three differently dosed OGTTs (25 g, 75 g, and 125 g), and three matched IIGIs were utilised (NCT00529048). Serum concentrations of sRAGE were measured over 240 min during each test. For individuals with diabetes, sRAGE area under the curve (AUC0–240min) declined with increasing i.v. glucose dosages (p < 0.0001 for trend) and was lower during IIGI compared to OGTT at the 125 g dosage (p = 0.004). In control subjects, sRAGE AUC0–240min was only lower during IIGI compared to OGTT at the 25 g dose (p = 0.0015). sRAGE AUC0–240min was negatively correlated to AUC0–240min for the incretin hormone glucagon-like peptide −1 (GLP-1) during the 75 g OGTT and matched IIGI, but only in individuals with type 2 diabetes. These data suggest that gastrointestinal factors may play a role in regulating sRAGE concentrations during postprandial glucose excursions, thus warranting further investigation.


2014 ◽  
Vol 307 (9) ◽  
pp. E822-E829 ◽  
Author(s):  
Thomas P. J. Solomon ◽  
Steven K. Malin ◽  
Kristian Karstoft ◽  
Sine H. Knudsen ◽  
Jacob M. Haus ◽  
...  

Plasma glucose, insulin, and C-peptide responses during an OGTT are informative for both research and clinical practice in type 2 diabetes. The aim of this study was to use such information to determine insulin sensitivity and insulin secretion so as to calculate an oral glucose disposition index (DIOGTT) that is a measure of pancreatic β-cell insulin secretory compensation for changing insulin sensitivity. We conducted an observational study of n = 187 subjects, representing the entire glucose tolerance continuum from normal glucose tolerance to type 2 diabetes. OGTT-derived insulin sensitivity (SI OGTT) was calculated using a novel multiple-regression model derived from insulin sensitivity measured by hyperinsulinemic euglycemic clamp as the independent variable. We also validated the novel SI OGTT in n = 40 subjects from an independent data set. Plasma C-peptide responses during OGTT were used to determine oral glucose-stimulated insulin secretion (GSISOGTT), and DIOGTT was calculated as the product of SI OGTT and GSISOGTT. Our novel SI OGTT showed high agreement with clamp-derived insulin sensitivity (typical error = +3.6%; r = 0.69, P < 0.0001) and that insulin sensitivity was lowest in subjects with impaired glucose tolerance and type 2 diabetes. GSISOGTT demonstrated a significant inverse relationship with SI OGTT. GSISOGTT was lowest in normal glucose-tolerant subjects and greatest in those with impaired glucose tolerance. DIOGTT was sequentially lower with advancing glucose intolerance. We hereby derive and validate a novel OGTT-derived measurement of insulin sensitivity across the entire glucose tolerance continuum and demonstrate that β-cell compensation for changing insulin sensitivity can be readily calculated from clinical variables collected during OGTT.


Author(s):  
Robert P. Hoffman ◽  
Melanie M. Copenhaver ◽  
Danlei Zhou ◽  
Chack-Yung Yu

Abstract Objectives In obese adults the shape of the glucose response curve during an oral glucose tolerance test (OGTT) predicts future type 2 diabetes. Patients with an incessant increase or monophasic curves have increased risk compared to those with biphasic curves. Since type 2 diabetes is associated with increased cardiometabolic risk, we studied whether differences in OGTT response curve are associated with differences in cardiometabolic risk factors in healthy adolescents across a wide body mass index (BMI) range. Methods Sixty-nine (33F/36M), white adolescents (age: 15.2 ± 1.7 years; BMI: 21.5 ± 4.7 kg/m2; mean ± SD) were studied. Risk factors measured included percent body fat, blood pressure, lipids, augmentation index, reactive hyperemia, endothelin 1, plasminogen activator 1, inflammatory markers (interleukin 6, c-reactive protein), insulin secretion, insulin sensitivity (Matusda index), and disposition index (DI). Results Thirty-two subjects had biphasic responses; 35 subjects had monophasic responses and two females had incessant increases. Sex did not affect the frequency of responses. Glucose area under the curve during OGTT was greater in those with a mono vs. biphasic curves (p=0.01). Disposition index was markedly lower in subjects with a monophasic curve than in those with a biphasic curve (3.6 [2.3–5.0] vs. 5.8 [3.8–7.6], median [25th, 75th%] p=0.003). Triglyceride to high-density lipoprotein cholesterol (HDL) ratio was higher in subjects with a monophasic curve (p=0.046). Conclusions The decreased disposition index indicates that in healthy adolescents a monophasic response to OGTT is due to decreased insulin secretion relative to the degree of insulin resistance present. This was not associated with differences in most other cardiometabolic risk markers. Trial registration Clinical Trials.gov, NCT02821104.


Sign in / Sign up

Export Citation Format

Share Document