New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity

2020 ◽  
Vol 319 (5) ◽  
pp. E827-E834 ◽  
Author(s):  
Masato Furuhashi

Xanthine oxidoreductase (XOR) consists of two different forms, xanthine dehydrogenase and xanthine oxidase (XO), and is a rate-limiting enzyme of uric acid production from hypoxanthine and xanthine. Uric acid is the end product of purine metabolism in humans and has a powerful antioxidant effect. The lack of ascorbic acid, known as vitamin C, in hominoids has been thought to cause a compensatory increase in uric acid as an antioxidant by unfunctional gene mutation of uricase to a pseudogene. Because XO is involved in an increase in reactive oxygen species (ROS) by generating superoxide and hydrogen peroxide, inadequate activation of XOR promotes oxidative stress-related tissue injury. Plasma XOR activity is associated with obesity, smoking, liver dysfunction, hyperuricemia, dyslipidemia, insulin resistance, and adipokines, indicating a novel biomarker of metabolic disorders. However, XOR activity in adipose tissue is low in humans unlike in rodents, and hypoxanthine is secreted from human adipose tissue. The concentration of hypoxanthine, but not xanthine, is independently associated with obesity in a general population, indicating differential regulation of hypoxanthine and xanthine. Treatment with an XOR inhibitor can decrease uric acid for preventing gout, reduce production of XO-related ROS, and promote reutilization of hypoxanthine and ATP production through the salvage pathway. It has recently been suggested that discontinuation of an XOR inhibitor causes adverse cardiovascular outcomes as XOR inhibitor withdrawal syndrome, possibly due to cardiac disturbance of conduction and contraction by reduced ATP production. New insights into purine metabolism, including the role of XOR activity in the past 5 yr, are mainly discussed in this review.

1981 ◽  
Vol 200 (3) ◽  
pp. 597-603 ◽  
Author(s):  
Z W Kamiński ◽  
M M Jezewska

The course of the reaction sequence hypoxanthine leads to xanthine leads to uric acid, catalysed by the NAD+-dependent activity of xanthine oxidoreductase, was investigated under conditions either of immediate oxidation of the NADH formed or of NADH accumulation. The enzymic preparation was obtained from rat liver, and purified 75-fold (as compared with the 25000 g supernatant) on a 5′-AMP-Sepharose 4B column; in this preparation the NAD+-dependent activity accounted for 100% of total xanthine oxidoreductase activity. A spectrophotometric method was developed for continuous measurements of changes in the concentrations of the three purines involved. The time course as well as the effects of the concentrations of enzyme and of hypoxanthine were examined. NADH produced by the enzyme lowered its activity by 50%, resulting in xanthine accumulation and in decreases of uric acid formation and of hypoxanthine utilization. The inhibition of the Xanthine oxidoreductase NAD+-dependent activity by NADH is discussed as a possible factor in the regulation of IMP biosynthesis by the ‘de novo’ pathway or (from unchanged hypoxanthine) by ther salvage pathway.


Author(s):  
Melania Gaggini ◽  
Fabrizia Carli ◽  
Amalia Gastaldelli

AbstractExcess caloric intake does not always translate to an expansion of the subcutaneous adipose tissue (SAT) and increase in fat mass. It is now recognized that adipocyte type (white, WAT, or brown, BAT), size (large vs. small) and metabolism are important factors for the development of cardiometabolic diseases. When the subcutaneous adipose tissue is not able to expand in response to increased energy intake the excess substrate is stored as visceral adipose tissue or as ectopic fat in tissues as muscle, liver and pancreas. Moreover, adipocytes become dysfunctional (adiposopathy, or sick fat), adipokines secretion is increased, fat accumulates in ectopic sites like muscle and liver and alters insulin signaling, increasing the demand for insulin secretion. Thus, there are some subjects that despite having normal weight have the metabolic characteristics of the obese (NWMO), while some obese expand their SAT and remain metabolically healthy (MHO). In this paper we have reviewed the recent findings that relate the metabolism of adipose tissue and its composition to metabolic diseases. In particular, we have discussed the possible role of dysfunctional adipocytes and adipose tissue resistance to the antilipolytic effect of insulin on the development of impaired glucose metabolism. Finally we have reviewed the possible role of BAT vs. WAT in the alteration of lipid and glucose metabolism and the recent studies that have tried to stimulate browning in human adipose tissue.


Author(s):  
Lore Lapeire ◽  
Hannelore Denys ◽  
Véronique Cocquyt ◽  
Olivier De Wever

AbstractSince the discovery of leptin in 1994, our vision of adipose tissue as a static organ regulating mainly lipid storage and release has been completely overthrown, and adipose tissue is now seen as an active and integral organ in human physiology. In the past years, extensive research has tremendously given us more insights in the mechanisms and pathways involved not only in normal but also in ‘sick’ adipose tissue, for example, in obesity and lipodystrophy. With growing evidence of a link between obesity and several types of cancer, research focusing on the interaction between adipose tissue and cancer has begun to unravel the interesting but complex multi-lateral communication between the different players. With breast cancer as one of the first cancer types where a positive correlation between obesity and breast cancer incidence and prognosis in post-menopausal women was found, we have focused this review on the paracrine and endocrine role of adipose tissue in breast cancer initiation and progression. As important inter-species differences in adipose tissue occur, we mainly selected human adipose tissue- and breast cancer-based studies with a short reflection on therapeutic possibilities. This review is part of the special issue on “Adiposopathy in Cancer and (Cardio)Metabolic Diseases”.


2020 ◽  
Vol 21 (21) ◽  
pp. 8289
Author(s):  
Mari T. Kaartinen ◽  
Mansi Arora ◽  
Sini Heinonen ◽  
Aila Rissanen ◽  
Jaakko Kaprio ◽  
...  

Transglutaminases TG2 and FXIII-A have recently been linked to adipose tissue biology and obesity, however, human studies for TG family members in adipocytes have not been conducted. In this study, we investigated the association of TGM family members to acquired weight gain in a rare set of monozygotic (MZ) twins discordant for body weight, i.e., heavy–lean twin pairs. We report that F13A1 is the only TGM family member showing significantly altered, higher expression in adipose tissue of the heavier twin. Our previous work linked adipocyte F13A1 to increased weight, body fat mass, adipocyte size, and pro-inflammatory pathways. Here, we explored further the link of F13A1 to adipocyte size in the MZ twins via a previously conducted TWA study that was further mined for genes that specifically associate to hypertrophic adipocytes. We report that differential expression of F13A1 (ΔHeavy–Lean) associated with 47 genes which were linked via gene enrichment analysis to immune response, leucocyte and neutrophil activation, as well as cytokine response and signaling. Our work brings further support to the role of F13A1 in the human adipose tissue pathology, suggesting a role in the cascade that links hypertrophic adipocytes with inflammation.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
John N. Fain

This paper considers the role of putative adipokines that might be involved in the enhanced inflammatory response of human adipose tissue seen in obesity. Inflammatory adipokines [IL-6, IL-10, ACE, TGFβ1, TNFα, IL-1β, PAI-1, and IL-8] plus one anti-inflammatory [IL-10] adipokine were identified whose circulating levels as well as in vitro release by fat are enhanced in obesity and are primarily released by the nonfat cells of human adipose tissue. In contrast, the circulating levels of leptin and FABP-4 are also enhanced in obesity and they are primarily released by fat cells of human adipose tissue. The relative expression of adipokines and other proteins in human omental as compared to subcutaneous adipose tissue as well as their expression in the nonfat as compared to the fat cells of human omental adipose tissue is also reviewed. The conclusion is that the release of many inflammatory adipokines by adipose tissue is enhanced in obese humans.


2013 ◽  
Vol 98 (2) ◽  
pp. 549S-555S ◽  
Author(s):  
Hans Hauner ◽  
Stefanie Brunner ◽  
Ulrike Amann-Gassner

2020 ◽  
Vol 8 (2) ◽  
pp. e000964 ◽  
Author(s):  
Bogang Wu ◽  
Huai-Chin Chiang ◽  
Xiujie Sun ◽  
Bin Yuan ◽  
Payal Mitra ◽  
...  

The programmed death-ligand 1 (PD-L1)-dependent immune checkpoint attenuates host immunity and maintains self-tolerance. Imbalance between protective immunity and immunopathology due to altered PD-L1 signaling can lead to autoimmunity or tumor immunosuppression. The role of the PD-L1-dependent checkpoint in non-immune system is less reported. We previously found that white adipocytes highly express PD-L1. Here we show that adipocyte-specific PD-L1 knockout mice exhibit enhanced host anti-tumor immunity against mammary tumors and melanoma with low or no tumor PD-L1. However, adipocyte PD-L1 ablation in tumor-free mice also exacerbates diet-induced body weight gain, pro-inflammatory macrophage infiltration into adipose tissue, and insulin resistance. Low PD-L1 mRNA levels in human adipose tissue correlate with high body mass index and presence of type 2 diabetes. Therefore, our mouse genetic approach unequivocally demonstrates a cell-autonomous function of adipocyte PD-L1 in promoting tumor growth and inhibiting antitumor immunity. In addition, our work uncovers a previously unrecognized role of adipocyte PD-L1 in mitigating obesity-related inflammation and metabolic dysfunction.


Metabolism ◽  
1978 ◽  
Vol 27 (12) ◽  
pp. 1755-1762 ◽  
Author(s):  
Thomas W. Burns ◽  
Paul E. Langley ◽  
Boyd E. Terry ◽  
G.Alan Robinson

Sign in / Sign up

Export Citation Format

Share Document