scholarly journals The role of dietary fatty acids for early human adipose tissue growth

2013 ◽  
Vol 98 (2) ◽  
pp. 549S-555S ◽  
Author(s):  
Hans Hauner ◽  
Stefanie Brunner ◽  
Ulrike Amann-Gassner
Metabolism ◽  
1978 ◽  
Vol 27 (12) ◽  
pp. 1755-1762 ◽  
Author(s):  
Thomas W. Burns ◽  
Paul E. Langley ◽  
Boyd E. Terry ◽  
G.Alan Robinson

Metabolism ◽  
2006 ◽  
Vol 55 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Salete Cipriano Brito ◽  
William Lara Festuccia ◽  
Nair Honda Kawashita ◽  
Maria Ferreira Moura ◽  
Analúcia Rampazzo Xavier ◽  
...  

2009 ◽  
Vol 54 (2) ◽  
pp. 97-103 ◽  
Author(s):  
H. Hauner ◽  
C. Vollhardt ◽  
K.T.M. Schneider ◽  
A. Zimmermann ◽  
T. Schuster ◽  
...  

2019 ◽  
Vol 79 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Paul Petrus ◽  
Peter Arner

Nutrition is a major variable factor in human environments. The composition of nutrients has changed markedly in recent decades which may contribute to the increased prevalence of metabolic diseases, such as obesity and type 2 diabetes. Fat is an important component of the diet which comes in various forms with fatty acids (FA) of different carbon chain lengths and saturation degrees. In addition to being an energy supply, FA function as potent signalling molecules and influence transcriptional activity. Among other tissues, dietary FA target white adipose tissue function, which is central in maintaining metabolic health. This review focuses on the possible role of dietary FA composition and its effect on human white adipose tissue expandability and transcriptional response. Altogether, the existing literature suggests that unsaturated fat has more benign effects on adipose tissue distribution when compared to long-chain saturated fat. However, the mechanisms of action remain poorly characterised.


2020 ◽  
Vol 21 (21) ◽  
pp. 8289
Author(s):  
Mari T. Kaartinen ◽  
Mansi Arora ◽  
Sini Heinonen ◽  
Aila Rissanen ◽  
Jaakko Kaprio ◽  
...  

Transglutaminases TG2 and FXIII-A have recently been linked to adipose tissue biology and obesity, however, human studies for TG family members in adipocytes have not been conducted. In this study, we investigated the association of TGM family members to acquired weight gain in a rare set of monozygotic (MZ) twins discordant for body weight, i.e., heavy–lean twin pairs. We report that F13A1 is the only TGM family member showing significantly altered, higher expression in adipose tissue of the heavier twin. Our previous work linked adipocyte F13A1 to increased weight, body fat mass, adipocyte size, and pro-inflammatory pathways. Here, we explored further the link of F13A1 to adipocyte size in the MZ twins via a previously conducted TWA study that was further mined for genes that specifically associate to hypertrophic adipocytes. We report that differential expression of F13A1 (ΔHeavy–Lean) associated with 47 genes which were linked via gene enrichment analysis to immune response, leucocyte and neutrophil activation, as well as cytokine response and signaling. Our work brings further support to the role of F13A1 in the human adipose tissue pathology, suggesting a role in the cascade that links hypertrophic adipocytes with inflammation.


2009 ◽  
Vol 34 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Gregory R. Steinberg

During moderate-intensity exercise, fatty acids are the predominant substrate for working skeletal muscle. The release of fatty acids from adipose tissue stores, combined with the ability of skeletal muscle to actively fine tune the gradient between fatty acid and carbohydrate metabolism, depending on substrate availability and energetic demands, requires a coordinated system of metabolic control. Over the past decade, since the discovery that AMP-activated protein kinase (AMPK) was increased in accordance with exercise intensity, there has been significant interest in the proposed role of this ancient stress-sensing kinase as a critical integrative switch controlling metabolic responses during exercise. In this review, studies examining the role of AMPK as a regulator of fatty acid metabolism in both adipose tissue and skeletal muscle during exercise will be discussed. Exercise induces activation of AMPK in adipocytes and regulates triglyceride hydrolysis and esterfication through phosphorylation of hormone sensitive lipase (HSL) and glycerol-3-phosphate acyl-transferase, respectively. In skeletal muscle, exercise-induced activation of AMPK is associated with increases in fatty acid uptake, phosphorylation of HSL, and increased fatty acid oxidation, which is thought to occur via the acetyl-CoA carboxylase-malony-CoA-CPT-1 signalling axis. Despite the importance of AMPK in regulating fatty acid metabolism under resting conditions, recent evidence from transgenic models of AMPK deficiency suggest that alternative signalling pathways may also be important for the control of fatty acid metabolism during exercise.


1996 ◽  
Vol 1996 ◽  
pp. 155-155
Author(s):  
M S Redshaw ◽  
J Wiseman ◽  
D J A Cole ◽  
J D Wood ◽  
M Enser ◽  
...  

It is well established that the fatty acid combustion of adipose issue in pigs (non-ruminants) may be manipulated by changes in the fatty acid profile of the diets. The objective of this program of work was to quantify the responses of adipose depots of finishing pigs to changes in the level and profile of dietary fatty acids and to relate these changes to the sensory quality of meat as determined by taste panel.


2009 ◽  
Vol 81 (3) ◽  
pp. 453-466 ◽  
Author(s):  
Cláudia M. Oller do Nascimento ◽  
Eliane B. Ribeiro ◽  
Lila M. Oyama

Approximately 40% of the total energy consumed by western populations is represented by lipids, most of them being ingested as triacylglycerols and phospholipids. The focus of this review is to analyze the effect of the type of dietary fat on white adipose tissue metabolism and secretory function, particularly on haptoglobin, TNF-α, plasminogen activator inhibitor-1 and adiponectin secretion. Previous studies have demonstrated that the duration of the exposure to the high-fat feeding, amount of fatty acid present in the diet and the type of fatty acid may or may not have a significant effect on adipose tissue metabolism. However, the long-term or short-term high fat diets, especially rich in saturated fatty acids, probably by activation of toll-like receptors, stimulated the expression of proinflammatory adipokines and inhibited adiponectin expression. Further studies are needed to investigate the cellular mechanisms by which dietary fatty acids affect white adipose tissue metabolism and secretory functions.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
John N. Fain

This paper considers the role of putative adipokines that might be involved in the enhanced inflammatory response of human adipose tissue seen in obesity. Inflammatory adipokines [IL-6, IL-10, ACE, TGFβ1, TNFα, IL-1β, PAI-1, and IL-8] plus one anti-inflammatory [IL-10] adipokine were identified whose circulating levels as well as in vitro release by fat are enhanced in obesity and are primarily released by the nonfat cells of human adipose tissue. In contrast, the circulating levels of leptin and FABP-4 are also enhanced in obesity and they are primarily released by fat cells of human adipose tissue. The relative expression of adipokines and other proteins in human omental as compared to subcutaneous adipose tissue as well as their expression in the nonfat as compared to the fat cells of human omental adipose tissue is also reviewed. The conclusion is that the release of many inflammatory adipokines by adipose tissue is enhanced in obese humans.


Sign in / Sign up

Export Citation Format

Share Document