FoxO1 as a double-edged sword in the pancreas: analysis of pancreas- and β-cell-specific FoxO1 knockout mice

2012 ◽  
Vol 302 (5) ◽  
pp. E603-E613 ◽  
Author(s):  
Masaki Kobayashi ◽  
Osamu Kikuchi ◽  
Tsutomu Sasaki ◽  
Hye-Jin Kim ◽  
Hiromi Yokota-Hashimoto ◽  
...  

Diabetes is characterized by an absolute or relative deficiency of pancreatic β-cells. New strategies to accelerate β-cell neogenesis or maintain existing β-cells are desired for future therapies against diabetes. We previously reported that forkhead box O1 (FoxO1) inhibits β-cell growth through a Pdx1-mediated mechanism. However, we also reported that FoxO1 protects against β-cell failure via the induction of NeuroD and MafA. Here, we investigate the physiological roles of FoxO1 in the pancreas by generating the mice with deletion of FoxO1 in the domains of the Pdx1 promoter (P-FoxO1-KO) or the insulin 2 promoter (β-FoxO1-KO) and analyzing the metabolic parameters and pancreatic morphology under two different conditions of increased metabolic demand: high-fat high-sucrose diet (HFHSD) and db/db background. P-FoxO1-KO, but not β-FoxO1-KO, showed improved glucose tolerance with HFHSD. Immunohistochemical analysis revealed that P-FoxO1-KO had increased β-cell mass due to increased islet number rather than islet size, indicating accelerated β-cell neogenesis. Furthermore, insulin-positive pancreatic duct cells were increased in P-FoxO1-KO but not β-FoxO1-KO. In contrast, db/db mice crossed with P-FoxO1-KO or β-FoxO1-KO showed more severe glucose intolerance than control db/db mice due to decreased glucose-responsive insulin secretion. Electron microscope analysis revealed fewer insulin granules in FoxO1 knockout db/db mice. We conclude that FoxO1 functions as a double-edged sword in the pancreas; FoxO1 essentially inhibits β-cell neogenesis from pancreatic duct cells but is required for the maintenance of insulin secretion under metabolic stress.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brenda Strutt ◽  
Sandra Szlapinski ◽  
Thineesha Gnaneswaran ◽  
Sarah Donegan ◽  
Jessica Hill ◽  
...  

AbstractThe apelin receptor (Aplnr) and its ligands, Apelin and Apela, contribute to metabolic control. The insulin resistance associated with pregnancy is accommodated by an expansion of pancreatic β-cell mass (BCM) and increased insulin secretion, involving the proliferation of insulin-expressing, glucose transporter 2-low (Ins+Glut2LO) progenitor cells. We examined changes in the apelinergic system during normal mouse pregnancy and in pregnancies complicated by glucose intolerance with reduced BCM. Expression of Aplnr, Apelin and Apela was quantified in Ins+Glut2LO cells isolated from mouse pancreata and found to be significantly higher than in mature β-cells by DNA microarray and qPCR. Apelin was localized to most β-cells by immunohistochemistry although Aplnr was predominantly associated with Ins+Glut2LO cells. Aplnr-staining cells increased three- to four-fold during pregnancy being maximal at gestational days (GD) 9–12 but were significantly reduced in glucose intolerant mice. Apelin-13 increased β-cell proliferation in isolated mouse islets and INS1E cells, but not glucose-stimulated insulin secretion. Glucose intolerant pregnant mice had significantly elevated serum Apelin levels at GD 9 associated with an increased presence of placental IL-6. Placental expression of the apelinergic axis remained unaltered, however. Results show that the apelinergic system is highly expressed in pancreatic β-cell progenitors and may contribute to β-cell proliferation in pregnancy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniela Nasteska ◽  
Nicholas H. F. Fine ◽  
Fiona B. Ashford ◽  
Federica Cuozzo ◽  
Katrina Viloria ◽  
...  

AbstractTranscriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.


2006 ◽  
Vol 26 (12) ◽  
pp. 4553-4563 ◽  
Author(s):  
Seon-Yong Yeom ◽  
Geun Hyang Kim ◽  
Chan Hee Kim ◽  
Heun Don Jung ◽  
So-Yeon Kim ◽  
...  

ABSTRACT Activating signal cointegrator 2 (ASC-2) is a transcriptional coactivator of many nuclear receptors (NRs) and other transcription factors and contains two NR-interacting LXXLL motifs (NR boxes). In the pancreas, ASC-2 is expressed only in the endocrine cells of the islets of Langerhans, but not in the exocrine cells. Thus, we examined the potential role of ASC-2 in insulin secretion from pancreatic β-cells. Overexpressed ASC-2 increased glucose-elicited insulin secretion, whereas insulin secretion was decreased in islets from ASC-2+/− mice. DN1 and DN2 are two dominant-negative fragments of ASC-2 that contain NR boxes 1 and 2, respectively, and block the interactions of cognate NRs with the endogenous ASC-2. Primary rat islets ectopically expressing DN1 or DN2 exhibited decreased insulin secretion. Furthermore, relative to the wild type, ASC-2+/− mice showed reduced islet mass and number, which correlated with increased apoptosis and decreased proliferation of ASC-2+/− islets. These results suggest that ASC-2 regulates insulin secretion and β-cell survival and that the regulatory role of ASC-2 in insulin secretion appears to involve, at least in part, its interaction with NRs via its two NR boxes.


2002 ◽  
Vol 159 (2) ◽  
pp. 303-312 ◽  
Author(s):  
Yves Heremans ◽  
Mark Van De Casteele ◽  
Peter in't Veld ◽  
Gerard Gradwohl ◽  
Palle Serup ◽  
...  

Regulatory proteins have been identified in embryonic development of the endocrine pancreas. It is unknown whether these factors can also play a role in the formation of pancreatic endocrine cells from postnatal nonendocrine cells. The present study demonstrates that adult human pancreatic duct cells can be converted into insulin-expressing cells after ectopic, adenovirus-mediated expression of the class B basic helix-loop-helix factor neurogenin 3 (ngn3), which is a critical factor in embryogenesis of the mouse endocrine pancreas. Infection with adenovirus ngn3 (Adngn3) induced gene and/or protein expression of NeuroD/β2, Pax4, Nkx2.2, Pax6, and Nkx6.1, all known to be essential for β-cell differentiation in mouse embryos. Expression of ngn3 in adult human duct cells induced Notch ligands Dll1 and Dll4 and neuroendocrine- and β-cell–specific markers: it increased the percentage of synaptophysin- and insulin-positive cells 15-fold in ngn3-infected versus control cells. Infection with NeuroD/β2 (a downstream target of ngn3) induced similar effects. These data indicate that the Delta-Notch pathway, which controls embryonic development of the mouse endocrine pancreas, can also operate in adult human duct cells driving them to a neuroendocrine phenotype with the formation of insulin-expressing cells.


2015 ◽  
Vol 75 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Romano Regazzi ◽  
Adriana Rodriguez-Trejo ◽  
Cécile Jacovetti

Insulin is a key hormone controlling metabolic homeostasis. Loss or dysfunction of pancreatic β-cells lead to the release of insufficient insulin to cover the organism needs, promoting diabetes development. Since dietary nutrients influence the activity of β-cells, their inadequate intake, absorption and/or utilisation can be detrimental. This review will highlight the physiological and pathological effects of nutrients on insulin secretion and discuss the underlying mechanisms. Glucose uptake and metabolism in β-cells trigger insulin secretion. This effect of glucose is potentiated by amino acids and fatty acids, as well as by entero-endocrine hormones and neuropeptides released by the digestive tract in response to nutrients. Glucose controls also basal and compensatory β-cell proliferation and, along with fatty acids, regulates insulin biosynthesis. If in the short-term nutrients promote β-cell activities, chronic exposure to nutrients can be detrimental to β-cells and causes reduced insulin transcription, increased basal secretion and impaired insulin release in response to stimulatory glucose concentrations, with a consequent increase in diabetes risk. Likewise, suboptimal early-life nutrition (e.g. parental high-fat or low-protein diet) causes altered β-cell mass and function in adulthood. The mechanisms mediating nutrient-induced β-cell dysfunction include transcriptional, post-transcriptional and translational modifications of genes involved in insulin biosynthesis and secretion, carbohydrate and lipid metabolism, cell differentiation, proliferation and survival. Altered expression of these genes is partly caused by changes in non-coding RNA transcripts induced by unbalanced nutrient uptake. A better understanding of the mechanisms leading to β-cell dysfunction will be critical to improve treatment and find a cure for diabetes.


2000 ◽  
Vol 279 (1) ◽  
pp. E68-E73 ◽  
Author(s):  
Ye Qi Liu ◽  
Peter W. Nevin ◽  
Jack L. Leahy

Islet β-cells are the regulatory element of the glucose homeostasis system. When functioning normally, they precisely counterbalance changes in insulin sensitivity or β-cell mass to preserve normoglycemia. This understanding seems counter to the dogma that β-cells are regulated by glycemia. We studied 60% pancreatectomy rats (Px) 4 wk postsurgery to elucidate the β-cell adaptive mechanisms. Nonfasting glycemia and insulinemia were identical in Px and sham-operated controls. There was partial regeneration of the excised β-cells in the Px rats, but it was limited in scope, with the pancreas β-cell mass reaching 55% of the shams (40% increase from the time of surgery). More consequential was a heightened glucose responsiveness of Px islets so that glucose utilization and insulin secretion per milligram of islet protein were both 80% augmented at normal levels of glycemia. Investigation of the biochemical basis showed a doubled glucokinase maximal velocity in Px islets, with no change in the glucokinase protein concentration after adjustment for the different β-cell mass in Px and sham islets. Hexokinase activity measured in islet extracts was also minimally increased, but the glucose 6-phosphate concentration and basal glucose usage of Px islets were not different from those in islets from sham-operated rats. The dominant β-cell adaptive response in the 60% Px rats was an increased catalytic activity of glucokinase. The remaining β-cells thus sense, and respond to, perceived hyperglycemia despite glycemia actually being normal. β-Cell mass and insulin secretion are both augmented so that whole pancreas insulin output, and consequently glycemia, are maintained at normal levels.


2020 ◽  
Author(s):  
Ada Admin ◽  
Shoko Takei ◽  
Shuichi Nagashima ◽  
Akihito Takei ◽  
Daisuke Yamamuro ◽  
...  

Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), statins, which are used to prevent cardiovascular diseases, are associated with a modest increase in the risk of new-onset diabetes mellitus. To investigate the role of HMGCR in the development of β cells and glucose homeostasis, we deleted <i>Hmgcr</i> in a β cell-specific manner by using the Cre-loxP technique. Mice lacking <i>Hmgcr</i> in β cells (β-KO) exhibited hypoinsulinemic hyperglycemia as early as postnatal day 9 (P9) due to decreases in both β cell mass and insulin secretion. Ki67 positive cells were reduced in β-KO mice at P9, thus β cell mass reduction was caused by proliferation disorder immediately after birth. The mRNA expression of <i>neurogenin3 (Ngn3)</i>, which is transiently expressed in endocrine progenitors of the embryonic pancreas, was maintained despite a striking reduction in the expression of β cell-associated genes, such as <i>insulin</i>, <i>Pancreatic and duodenal homeobox 1</i> <i>(Pdx1)</i> and <i>MAF BZIP transcription factor A (</i><i>Mafa)</i> in the islets from β-KO mice. Histological analyses revealed dysmorphic islets with markedly reduced numbers of β cells, some of which were also positive for glucagon. In conclusion, HMGCR plays critical roles not only in insulin secretion but also in the development of β cells in mice.


Sign in / Sign up

Export Citation Format

Share Document