scholarly journals The glucocorticoid receptor: cause of or cure for obesity?

2016 ◽  
Vol 310 (4) ◽  
pp. E249-E257 ◽  
Author(s):  
Kezia John ◽  
Joseph S. Marino ◽  
Edwin R. Sanchez ◽  
Terry D. Hinds

Glucocorticoid hormones (GCs) are important regulators of lipid metabolism, promoting lipolysis with acute treatment but lipogenesis with chronic exposure. Conventional wisdom posits that these disparate outcomes are mediated by the classical glucocorticoid receptor GRα. There is insufficient knowledge of the GC receptors (GRα and GRβ) in metabolic conditions such as obesity and diabetes. We present acute models of GC exposure that induce lipolysis, such as exercise, as well as chronic-excess models that cause obesity and lipid accumulation in the liver, such as hepatic steatosis. Alternative mechanisms are then proposed for the lipogenic actions of GCs, including induction of GC resistance by the GRβ isoform, and promotion of lipogenesis by GC activation of the mineralocorticoid receptor (MR). Finally, the potential involvement of chaperone proteins in the regulation of adipogenesis is considered. This reevaluation may prove useful to future studies on the steroidal basis of adipogenesis and obesity.

2019 ◽  
Vol 12 (2) ◽  
pp. 139-146
Author(s):  
Vishal J. Patel ◽  
Amit A. Joharapurkar ◽  
Samadhan G. Kshirsagar ◽  
Brijesh K. Sutariya ◽  
Maulik S. Patel ◽  
...  

Background: Balanced coagonists of glucagon-like peptide-1 (GLP-1) and glucagon receptors are emerging therapies for the treatment of obesity and diabetes. Such coagonists also regulate lipid metabolism, independent of their body weight lowering effects. Many actions of the coagonists are partly mediated by fibroblast growth factor 21 (FGF21) signaling, with the major exception of bile homeostasis. Since thyroid hormone is an important regulator of bile homeostasis, we studied the involvement of thyroid hormone in coagonist-induced changes in lipid and bile metabolism. Methods: We evaluated the effect of a single dose of coagonist Aib2 C24 chimera2 at 150 to 10000 µg/kg on tetraiodothyronine (T4) and triiodothyronine (T3) in high-fat diet-induced obese (DIO) mice and chow-fed mice. Repeated dose treatment of coagonist (150 µg/kg, subcutaneously) was assessed in four mice models namely, on lipid and bile homeostasis in DIO mice, propylthiouracil (PTU)-treated DIO mice, methimazole (MTM)-treated DIO mice and choline-deficient, L-amino acid-defined, highfat diet (CDAHFD)-induced nonalcoholic steatohepatitis (NASH). Results: Single dose treatment of coagonist did not alter serum T3 and T4 in chow-fed mice and DIO mice. Coagonist treatment improved lipid metabolism and biliary cholesterol excretion. Chronic treatment of GLP-1 and glucagon coagonist did not alter serum T3 in hypothyroid DIO mice and CDAHFDinduced NASH. Coagonist increased serum T4 in DIO mice after 4 and 40 weeks of treatment, though no change in T4 levels was observed in hypothyroid mice or mice with NASH. Conclusion: Our data demonstrate that coagonist of GLP-1 and glucagon receptors does not modulate bile homeostasis via thyroid signaling.


Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132414
Author(s):  
Henghai Su ◽  
Peihong Yuan ◽  
Hehua Lei ◽  
Li Zhang ◽  
Dazhi Deng ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Judit Gil-Zamorano ◽  
João Tomé-Carneiro ◽  
María-Carmen Lopez de las Hazas ◽  
Lorena del Pozo-Acebo ◽  
M. Carmen Crespo ◽  
...  

Abstract The role of miRNAs in intestinal lipid metabolism is poorly described. The small intestine is constantly exposed to high amounts of dietary lipids, and it is under conditions of stress that the functions of miRNAs become especially pronounced. Approaches consisting in either a chronic exposure to cholesterol and triglyceride rich diets (for several days or weeks) or an acute lipid challenge were employed in the search for intestinal miRNAs with a potential role in lipid metabolism regulation. According to our results, changes in miRNA expression in response to fat ingestion are dependent on factors such as time upon exposure, gender and small intestine section. Classic and recent intestinal in vitro models (i.e. differentiated Caco-2 cells and murine organoids) partially mirror miRNA modulation in response to lipid challenges in vivo. Moreover, intestinal miRNAs might play a role in triglyceride absorption and produce changes in lipid accumulation in intestinal tissues as seen in a generated intestinal Dicer1-deletion murine model. Overall, despite some variability between the different experimental cohorts and in vitro models, results show that some miRNAs analysed here are modulated in response to dietary lipids, hence likely to participate in the regulation of lipid metabolism, and call for further research.


2008 ◽  
Vol 22 (4) ◽  
pp. 19
Author(s):  
Olivia Wynne ◽  
Jay Horvat ◽  
Roger Smith ◽  
Philip Hansbro ◽  
Vicki Clifton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document