A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly

2006 ◽  
Vol 291 (2) ◽  
pp. E381-E387 ◽  
Author(s):  
Christos S. Katsanos ◽  
Hisamine Kobayashi ◽  
Melinda Sheffield-Moore ◽  
Asle Aarsland ◽  
Robert R. Wolfe

This study was designed to evaluate the effects of enriching an essential amino acid (EAA) mixture with leucine on muscle protein metabolism in elderly and young individuals. Four (2 elderly and 2 young) groups were studied before and after ingestion of 6.7 g of EAAs. EAAs were based on the composition of whey protein [26% leucine (26% Leu)] or were enriched in leucine [41% leucine (41% Leu)]. A primed, continuous infusion of l-[ ring-2H5]phenylalanine was used together with vastus lateralis muscle biopsies and leg arteriovenous blood samples for the determinations of fractional synthetic rate (FSR) and balance of muscle protein. FSR increased following amino acid ingestion in both the 26% (basal: 0.048 ± 0.005%/h; post-EAA: 0.063 ± 0.007%/h) and the 41% (basal: 0.036 ± 0.004%/h; post-EAA: 0.051 ± 0.007%/h) Leu young groups ( P < 0.05). In contrast, in the elderly, FSR did not increase following ingestion of 26% Leu EAA (basal: 0.044 ± 0.003%/h; post-EAA: 0.049 ± 0.006%/h; P > 0.05) but did increase following ingestion of 41% Leu EAA (basal: 0.038 ± 0.007%/h; post-EAA: 0.056 ± 0.008%/h; P < 0.05). Similar to the FSR responses, the mean response of muscle phenylalanine net balance, a reflection of muscle protein balance, was improved ( P < 0.05) in all groups, with the exception of the 26% Leu elderly group. We conclude that increasing the proportion of leucine in a mixture of EAA can reverse an attenuated response of muscle protein synthesis in elderly but does not result in further stimulation of muscle protein synthesis in young subjects.

2012 ◽  
Vol 108 (S2) ◽  
pp. S139-S148 ◽  
Author(s):  
Renate Jonker ◽  
Mariëlle P. K. J. Engelen ◽  
Nicolaas E. P. Deutz

In a variety of chronic and acute disease states, alterations in protein synthesis, breakdown and protein turnover rates occur that are related to the loss of body protein and skeletal muscle wasting. A key observation is the stimulation of protein breakdown in muscle and the stimulation of protein synthesis in the splanchnic area; mainly liver. An altered splanchnic extraction of amino acids as well as an anabolic resistance to dietary protein, related to stress, disuse and aging play a key role in the pathogenesis of muscle wasting in these conditions. To overcome these factors, specific dietary protein and amino acid diets have been introduced. The main focus of these diets is the quantity and quality of dietary proteins and whether a balanced mixture or solely dietary essential amino acids are required with or without higher intake levels of specific amino acids. Specifically in cancer patients, stimulated muscle protein synthesis has been obtained by increasing the amount of protein in a meal and by providing additional leucine. Also in other chronic diseases such as chronic obstructive pulmonary disease and cystic fibrosis, meals with specific dietary proteins and specific combinations of dietary essential amino acids are able to stimulate anabolism. In acute diseases, a special role for the amino acid arginine and its precursor citrulline as anabolic drivers has been observed. Thus, there is growing evidence that modifying the dietary amino acid composition of a meal will positively influence the net balance between muscle protein synthesis and breakdown, leading to muscle protein anabolism in a variety of chronic and acute disease states. Specific amino acids with anabolic potential are leucine, arginine and citrulline.


2009 ◽  
Vol 140 (2) ◽  
pp. 264-270 ◽  
Author(s):  
Fiona A. Wilson ◽  
Agus Suryawan ◽  
Maria C. Gazzaneo ◽  
Renán A. Orellana ◽  
Hanh V. Nguyen ◽  
...  

2000 ◽  
Vol 278 (4) ◽  
pp. E620-E626 ◽  
Author(s):  
Debbie L. Hasten ◽  
Jina Pak-Loduca ◽  
Kathleen A. Obert ◽  
Kevin E. Yarasheski

We determined whether short-term weight-lifting exercise increases the synthesis rate of the major contractile proteins, myosin heavy chain (MHC), actin, and mixed muscle proteins in nonfrail elders and younger women and men. Fractional synthesis rates of mixed, MHC, and actin proteins were determined in seven healthy sedentary 23- to 32-yr-old and seven healthy 78- to 84-yr-old participants in paired studies done before and at the end of a 2-wk weight-lifting program. The in vivo rate of incorporation of 1-[13C]leucine into vastus lateralis MHC, actin, and mixed proteins was determined using a 14-h constant intravenous infusion of 1-[13C]leucine. Before exercise, the mixed and MHC fractional synthetic rates were lower in the older than in the younger participants ( P ≤ 0.04). Baseline actin protein synthesis rates were similar in the two groups ( P = not significant). Over a 2-wk period, participants completed ten 1- to 1.5-h weight-lifting exercise sessions: 2–3 sets per day of 9 exercises, 8–12 repetitions per set, at 60–90% of maximum voluntary muscle strength. At the end of exercise, MHC and mixed protein synthetic rates increased in the younger (88 and 121%) and older participants (105 and 182%; P < 0.001 vs. baseline). These findings indicate that MHC and mixed protein synthesis rates are reduced more than actin in advanced age. Similar to that of 23–32 yr olds, the vastus lateralis muscle in 78–84 yr olds retains the capacity to increase MHC and mixed protein synthesis rates in response to short-term resistance exercise.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1825 ◽  
Author(s):  
Insaf Berrazaga ◽  
Valérie Micard ◽  
Marine Gueugneau ◽  
Stéphane Walrand

Plant-sourced proteins offer environmental and health benefits, and research increasingly includes them in study formulas. However, plant-based proteins have less of an anabolic effect than animal proteins due to their lower digestibility, lower essential amino acid content (especially leucine), and deficiency in other essential amino acids, such as sulfur amino acids or lysine. Thus, plant amino acids are directed toward oxidation rather than used for muscle protein synthesis. In this review, we evaluate the ability of plant- versus animal-based proteins to help maintain skeletal muscle mass in healthy and especially older people and examine different nutritional strategies for improving the anabolic properties of plant-based proteins. Among these strategies, increasing protein intake has led to a positive acute postprandial muscle protein synthesis response and even positive long-term improvement in lean mass. Increasing the quality of protein intake by improving amino acid composition could also compensate for the lower anabolic potential of plant-based proteins. We evaluated and discussed four nutritional strategies for improving the amino acid composition of plant-based proteins: fortifying plant-based proteins with specific essential amino acids, selective breeding, blending several plant protein sources, and blending plant with animal-based protein sources. These nutritional approaches need to be profoundly examined in older individuals in order to optimize protein intake for this population who require a high-quality food protein intake to mitigate age-related muscle loss.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 650-650
Author(s):  
Kevin Paulussen ◽  
Amadeo Salvador ◽  
Colleen McKenna ◽  
Susannah Scaroni ◽  
Alexander Ulanov ◽  
...  

Abstract Objectives Healthy eating patterns consist of eating whole foods as opposed to single nutrients. The maintenance of skeletal muscle mass is of particular interest to overall health. As such, there is a need to underpin the role of eating nutrients within their natural whole-food matrix versus isolated nutrients on the regulation of postprandial muscle protein synthesis rates. This study assessed the effects of eating salmon, a potential food within a healthy Mediterranean style eating pattern, on the stimulation of post-exercise muscle protein synthesis rates versus eating these same nutrients in isolation in healthy young adults. Methods In a crossover design, 10 recreationally active adults (24 ± 4 y; 5 M, 5 F) performed an acute bout of resistance exercise followed by the ingestion of salmon (SAL) (20.5 g protein and 7.5 g fat) or its matched constituents in the form of crystalline amino acids and fish oil (ISO). Blood and muscle biopsies were collected at rest and after exercise at 2 and 5 h during primed continuous infusions of L-[ring-2H5]phenylalanine for the measurement of myofibrillar protein synthesis and plasma amino acid profiles. Data were analyzed by using a 2-factor (time × condition) repeated-measures ANOVA with Tukey's post hoc test. Results Plasma essential amino acid concentrations increased to a similar extent in both SAL and ISO during the postprandial period (P &gt; 0.05). Likewise, postprandial plasma leucine concentrations did not differ between nutrient condition (P &gt; 0.05). The post-exercise myofibrillar protein synthetic responses were similarly stimulated in both nutrition conditions early (0–2 h; 0.079 ± 0.039%/h (SAL) compared to 0.071 ± 0.078%/h (ISO); P = 0.64) and returned to baseline later (2–5 h; 0.046 ± 0.020%/h (SAL) compared to 0.038 ± 0.025%/h (ISO); P = 0.90). Similarly, there were no differences in the stimulation of myofibrillar protein synthesis rates between SAL and ISO during the entire 0–5 h recovery period (0.058 ± 0.024%/h compared to 0.045 ± 0.027%/h, respectively; P = 0.66). Conclusions We show that the ingestion of salmon or its isolated nutrients increases plasma amino acid concentrations and enhances the stimulation of post-exercise muscle protein synthesis rates with no differences in the temporal or cumulative responses in healthy young adults. Funding Sources USDA National Institute of Food and Agriculture Hatch project.


PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0220757
Author(s):  
Bijal Patel ◽  
Martina Pauk ◽  
Miryam Amigo-Benavent ◽  
Alice B. Nongonierma ◽  
Richard J. Fitzgerald ◽  
...  

1999 ◽  
Vol 276 (4) ◽  
pp. E628-E634 ◽  
Author(s):  
Kevin D. Tipton ◽  
Arny A. Ferrando ◽  
Stuart M. Phillips ◽  
David Doyle ◽  
Robert R. Wolfe

We examined the response of net muscle protein synthesis to ingestion of amino acids after a bout of resistance exercise. A primed, constant infusion ofl-[ ring-2H5]phenylalanine was used to measure net muscle protein balance in three male and three female volunteers on three occasions. Subjects consumed in random order 1 liter of 1) a mixed amino acid (40 g) solution (MAA), 2) an essential amino acid (40 g) solution (EAA), and 3) a placebo solution (PLA). Arterial amino acid concentrations increased ∼150–640% above baseline during ingestion of MAA and EAA. Net muscle protein balance was significantly increased from negative during PLA ingestion (−50 ± 23 nmol ⋅ min−1 ⋅ 100 ml leg volume−1) to positive during MAA ingestion (17 ± 13 nmol ⋅ min−1 ⋅ 100 ml leg volume−1) and EAA (29 ± 14 nmol ⋅ min−1 ⋅ 100 ml leg volume−1; P < 0.05). Because net balance was similar for MAA and EAA, it does not appear necessary to include nonessential amino acids in a formulation designed to elicit an anabolic response from muscle after exercise. We concluded that ingestion of oral essential amino acids results in a change from net muscle protein degradation to net muscle protein synthesis after heavy resistance exercise in humans similar to that seen when the amino acids were infused.


2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Fiona A Wilson ◽  
Agus Suryawan ◽  
Maria C Gazzaneo ◽  
Renán A Orellana ◽  
Hanh V Nguyen ◽  
...  

2011 ◽  
Vol 43 (9) ◽  
pp. 1635-1642 ◽  
Author(s):  
CARL J. HULSTON ◽  
EMIL WOLSK ◽  
THOMAS S. GRØNDAHL ◽  
CHRISTINA YFANTI ◽  
GERRIT VAN HALL

2001 ◽  
Vol 26 (S1) ◽  
pp. S220-S227 ◽  
Author(s):  
Robert R. Wolfe

In the resting state muscle protein breakdown exceeds the rate of muscle protein synthesis, meaning that the balance between synthesis and breakdown is negative. Resistance exercise improves the net balance by stimulating muscle protein synthesis, but nutrient intake is requiredfor synthesis to exceed breakdown (i.e., an anabolic response). Exercise and exogenous amino acids have an additive effect on muscle protein synthesis. There is a timecourse of the response to a steady-state change in amino acid concentration. The signal for stimulation of muscle protein synthesis appears to be the extracellular concentrations of one or more of the essential amino acids (EAAs). Further, the rate , and direction, of change in extracellular concentrations (rather than the static concentration, per se) may be the important. Ingestion of non-essential AAs is not needed to stimulate muscle protein synthesis. Carbohydrate has, at most, a modest effect to enhance the response to amino acid ingestion after exercise. Finally, a mixture of EAAs + CRO more effectively stimulates muscle protein synthesis when taken before as opposed to after exercise.


Sign in / Sign up

Export Citation Format

Share Document