Ileal mucosal cyclic AMP and Cl secretion: serosal vs. mucosal addition of cholera toxin.

1977 ◽  
Vol 232 (2) ◽  
pp. E210 ◽  
Author(s):  
H E Sheerin ◽  
M Field

Changes in ion transport and cyclic AMP (cAMP) concentration produced by addition of cholera toxin to the serosal side of isolated rabbit ileal mucosa (CTs) were compared to the changes produced by addition to the mucosal side (CTm). CTs increased short-circuit current (SCC) as did CTm but it did so more slowly. CTs, unlike CTm, did not significantly decrease electrical conductance. Inhibition of the SCC response to theophylline, a measure of preexisting secretion, was almost complete 180 min after CTm but was not yet significant 180 min after CTs. Longer (280 min) after CTs, the SCC response to theophylline was reduced by 59%, a significant reduction but less than that caused by CTm. A statistically significant change in net Cl flux could not be demonstrated after CTs, although at 280 min the measured flux was halfway between the fluxes for control and CTm tissues. Cyclic AMP concentrations were determined at 190 min, 10 min after addition of theophylline. CTs, despite little or no effect on ion transport, increased cAMP to the same level as did CTm, and the effect on cAMP of adding toxin to both sides was additive. We conclude that 1) active secretion is probably stimulated by cholera toxin added on the serosal side, although more slowly than after addition to the mucosal side and 2) much of the toxin-stimulated cAMP content of the mucosa is not coupled to secretion.

1991 ◽  
Vol 260 (5) ◽  
pp. G703-G710 ◽  
Author(s):  
B. R. Grubb

In the fowl cecum in vitro, the influence of glucose and the three most prevalent naturally occurring volatile fatty acids (acetate, propionate, butyrate) on short-circuit current (Isc), electrical resistance, and transport of Na and Cl was determined. When glucose, acetate, or butyrate was present, ion transport was characterized by electrogenic Na absorption, greater than 65% of which was amiloride inhibitable, and Cl secretion, which also was electrogenic. Isc could be completely accounted for by net fluxes of Na and Cl. When glucose, acetate, or butyrate (10 mM both sides) was included in the incubation medium, cecal tissue maintained its Isc and a constant rate of net Na absorption and Cl secretion for a 5-h period. When no substrate was present or propionate was included in the medium, a marked fall in Isc and net Na and Cl fluxes was seen. Glucose caused an increase in Isc when added only to the serosal side. As 3-O-methylglucose (not metabolized) was not effective in stimulating Isc of the cecum (serosal or mucosal addition), it appeared that glucose increased Isc by acting as an energy substrate for active Na transport. Acetate and butyrate appeared to be equally effective in stimulating Na transport and Isc when placed on either side of the membrane. When the preparation was supplied with glucose (serosal side) and acetate was added to the mucosal side, no further stimulation of Isc occurred. Thus it appeared that acetate and butyrate were acting as substrates for active Na transport rather than stimulating Na transport by some other mechanism such as a cotransport with Na.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 256 (2) ◽  
pp. G335-G341 ◽  
Author(s):  
S. K. Nath ◽  
M. Rautureau ◽  
M. Heyman ◽  
H. Reggio ◽  
A. L'Helgoualc'h ◽  
...  

Epithelial properties and effects of cholera toxin (CT) and glucose were investigated in human rectal tumor cell line HRT-18. Addition of 10(-3) M dibutyryl adenosine 3',5'-cyclic monophosphate (DbcAMP), 10(-8) M vasoactive intestinal peptide, 10(-5) M epinephrine, and 10(-5) M forskolin to the serosal side and of 3.5 micrograms/ml CT to the mucosal side and of 2 micrograms/ml A23187 to both the serosal and mucosal sides raised short-circuit current (Isc). This rise was reversed by serosal addition of 5 x 10(-5) M bumetanide or 10(-4) M ouabain. In filters treated with CT, Isc and net chloride flux (JClnet) increased after 60 min from 0.05 +/- 0.008 and -0.04 in the Ringer to 0.32 +/- 0.05 and -0.33 mueq.h-1.cm-2, respectively. Addition of 10(-2) M glucose further raised Isc by stimulating net sodium flux (JNanet) (0.70 +/- 0.08 and + 0.58 mueq.h-1.cm-2, respectively). This additional augmentation of Isc was reversed by 0.5 mM phlorizin and was mimicked by 3-O-methyl-D-glucose. When the filters were stimulated by cAMP for 15 min, Isc was also enhanced by addition of glucose. In untreated filters, Isc, JNanet, and JClnet did not differ significantly before and after addition of glucose. It is concluded that HRT-18 cells in basal state do not display absorptive properties but secretory properties stimulated by CT. However they exhibit Na+-glucose cotransport once stimulated by either CT or cAMP.


1975 ◽  
Vol 229 (1) ◽  
pp. 86-92 ◽  
Author(s):  
M Field ◽  
HE Sheerin ◽  
A Henderson ◽  
PL Smith

Effects of catecholamines on cyclic AMP (cAMP) levels and ion fluxes were examined in isolated rabbit ileal mucosa. The base-line cAMP level was unaffected by epinephrine (Epi), norepinephrine (Norepi), and isoproterenol. The theophylline-augmented cAMP level was decreased slightly be Epi in one series of experiments but not in another. Propranolol did not enhance this effect. The increase in cAMP level produced by cholera toxin was almost completely reversed by addition of Epi or Norepi. This reversal was prevented by phenoxybenzamine. Epi also partially reversed the increase in cAMP level produced by prostaglandin E1. Effects of Epi on ion fluxes were determined following addition of secretagogues. Epi significantly decreased theophylline-induced but not cAMP or cholera toxin-induced Cl secretion. A decrease in short-circuit current was nonetheless observed in the latter two instances. The observed discrepancies between alpha-adrenergic effects on cAMP levels and ion fluxes suggest the following possibilities: 1) ion transport-related cAMP is only a small fraction of total mucosal cAMP; 2) cAMP-induced active ion secretion is only slowly reversible, or 3) effects of alpha-adrenergic stimuli on ion transport are not due to inhibition of cAMP accumulation.


1980 ◽  
Vol 239 (6) ◽  
pp. G532-G535 ◽  
Author(s):  
A. Ayalon ◽  
A. Corcia ◽  
G. Klemperer ◽  
S. R. Caplan

The effect of furosemide on acid secretion and Cl- transport was studied in isolated fundic mucosa of the guinea pig. Furosemide (10(-3) M), applied to the serosal side produced an immediate effect on the short-circuit current (Isc), lowering it by 47 +/- 2%. Potential difference decreased by 29 +/- 3%, electrical conductance by 18 +/- 4%, acid secretion by 38 +/- 1%, and net flux of Cl- from serosal-to-mucosal side by 37%. Application of the drug to the mucosal side produced similar effects on acid secretion and on the electrical parameters. It is suggested that furosemide blocks the entrance of Cl-, by the Na+--Cl- cotransport mechanism, through the basolateral membrane of the secreting cell. The consequent reduction in electrogenic Cl- transport would cause Isc and acid secretion to decrease. A reduction of Cl- conductance of the apical membrane, upon mucosal application of the drug, would cause similar effects on acid secretion and Cl- transport.


1986 ◽  
Vol 61 (3) ◽  
pp. 1065-1070 ◽  
Author(s):  
R. J. Corrales ◽  
D. L. Coleman ◽  
D. B. Jacoby ◽  
G. D. Leikauf ◽  
H. L. Hahn ◽  
...  

Sheets of trachea from ferret and cat were mounted in Ussing chambers and continuously short circuited. Under resting conditions, in both the cat and ferret there was little or no Cl secretion, and Na absorption accounted for most of the short-circuit current (Isc). Ouabain (10(-4) M, serosal bath) reduced Isc to zero in 30–60 min. This decline was matched by a decrease in net Na absorption. Amiloride (10(-4) M, luminal bath) caused a significant decrease in Isc and conductance (G) in both species. Bumetanide (10(-4) M, serosal bath) had negligible effects on Isc and G. In both species, isoproterenol increased Isc by stimulating Cl secretion. Methacholine induced equal amounts of Na and Cl secretion, with little change in Isc. In the cat, prostaglandins E2 and F2 alpha and bradykinin increased Isc, responses which were abolished in Cl-free medium. In open-circuited cat tissues, Na flux from the serosal to mucosal side was measured simultaneously with the secretion of nondialyzable 35S. Prostaglandins E1, E2, and F2 alpha, histamine, bradykinin, methacholine and isoproterenol all increased both Na and 35S-mucin secretion.


2014 ◽  
Vol 306 (5) ◽  
pp. C471-C484 ◽  
Author(s):  
Qian Wang ◽  
Bruce D. Schultz

Cellular mechanisms to account for the low Na+concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current ( Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na+channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Iscat all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Iscremains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na+concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na+transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.


1989 ◽  
Vol 77 (2) ◽  
pp. 161-166 ◽  
Author(s):  
K. J. Moriarty ◽  
N. B. Higgs ◽  
M. Woodford ◽  
L. A. Turnberg

1. Cholera toxin stimulates intestinal secretion in vitro by activation of mucosal adenylate cyclase. However, it has been proposed that cholera toxin promotes secretion in vivo mainly through an indirect mechanism involving enteric neural reflexes. 2. We examined this hypothesis further by studying the influence of neuronal blockade on cholera toxin-induced changes in fluid transport across rabbit ileum in vitro. Mucosa, stripped of muscle layers, was mounted in flux chambers and luminal application of crude cholera toxin (2 μg/ml) caused a delayed but sustained rise in the short-circuit current, electrical potential difference and Cl− secretion. Pretreatment with the nerve-blocking drug, tetrodotoxin (5 × 10−6 mol/l serosal side), failed to influence the secretory response to cholera toxin, and addition of tetrodotoxin at the peak response to cholera toxin also had no effect. 3. That tetrodotoxin could block neurally mediated secretagogues was confirmed by the demonstration that the electrical responses to neurotensin (10−7 mol/l and 10−8 mol/l) were blocked by tetrodotoxin (5 × 10−6 mol/l). Furthermore, the response to cholera toxin of segments of ileum, which included the myenteric, submucosal and mucosal nerve plexuses, was not inhibited by tetrodotoxin. 4. We conclude that cholera toxin-induced secretion in rabbit ileum in vitro is not mediated via a neurological mechanism.


1986 ◽  
Vol 251 (2) ◽  
pp. G253-G262 ◽  
Author(s):  
D. A. Russell

Experiments were performed to determine the ionic basis and physiological messengers of transepithelial ion transport alterations (short-circuit current, Isc) measured during the induction of intestinal anaphylaxis in an Ussing chamber. Antigens derived from Trichinella spiralis, an intestinal parasite, were used to challenge jejunal tissue from guinea pigs immunized by infection with the parasite. Histamine (10(-4) M) caused an increased in Isc that was similar to that induced by antigen. Diphenhydramine (10(-5) M) inhibited the epithelial electrical responses to histamine by 100% and to antigen by 60-70%. Indomethacin (10(-5) M), in combination with diphenhydramine, completely inhibited the antigen-induced rise in Isc. Furosemide (10(-4) M) caused 50-60% inhibition of the increase in Isc induced by antigen and histamine. Antigen challenge of isolated enterocytes did not alter intracellular cAMP content. However, antigen challenge of jejunal segments in which epithelial cells were in contact with sensitized mast cells increased mucosal cAMP content. These results suggest that electrogenic Cl- secretion, mediated in part by cAMP, contributes to antigen-induced jejunal ion transport changes and that histamine and prostaglandins are involved in eliciting these epithelial responses.


1982 ◽  
Vol 242 (3) ◽  
pp. G237-G242 ◽  
Author(s):  
E. B. Chang ◽  
M. Field ◽  
R. J. Miller

Catecholamines are known to decrease short-circuit current (Isc), stimulate NaCl absorption, and inhibit HCO3 secretion in rabbit ileal mucosa in vitro. These effects appear to be mediated by alpha-adrenergic receptors because they are partially blocked by phentolamine and not by propranolol. To further characterize this receptor system, we determined the interactions of epinephrine (Epi) with alpha-subtype-selective antagonists. Prazosin (PZ), a specific alpha 1-antagonist, did not alter the Epi dose-response curve at concentrations up to 10(-5) M. Yohimbine (YO), a specific alpha 2-antagonist, completely inhibited the Epi effect on Isc. At 10(-5) M, YO increased by 70-fold the concentration of Epi required to produce a half-maximal effect (ED50; from 1.4 X 10(-7) M to 10(-5) M). YO and PZ by themselves had no significant effect on Isc in concentrations up to 10(-5) M. Clonidine, a specific alpha 2-agonist, decreased Isc with an ED50 similar to that of Epi; its effect was blocked by YO but not by PZ. Two alpha 1-selective agonists, methoxamine and phenylephrine, only caused a decrease in Isc in doses greater than 10(-5) M. This effect was reversed by YO but not by PZ. The effects of YO and PZ on Epi-modified Cl fluxes were also determined. YO completely aborted the effects of Epi on net Cl flux. No significant effects were seen with PZ. We conclude that the effects of Epi on ileal ion transport are mediated by a specific alpha 2-adrenergic receptor present in ileal mucosa and that no physiologic alpha 1-receptor function can be demonstrated.


Sign in / Sign up

Export Citation Format

Share Document