Systemic lactate kinetics during graded exercise in man

1985 ◽  
Vol 249 (6) ◽  
pp. E595-E602 ◽  
Author(s):  
W. C. Stanley ◽  
E. W. Gertz ◽  
J. A. Wisneski ◽  
D. L. Morris ◽  
R. A. Neese ◽  
...  

To investigate the relationships between oxygen consumption (VO2) and the rates of systemic lactate appearance (Ra) and disappearance (Rd), six healthy males were studied at rest and during continuous graded exercise using a primed continuous infusion of lactate tracer. Subjects exercised for 6 min at 300, 600, 900, and 1,200 kg . m . min-1. L-(+)-[1-14C]lactate was infused intravenously, and arterial samples were drawn at rest and every 2 min throughout the exercise period. Ra and Rd were calculated using nonsteady-state equations. At rest Ra and Rd were 14.4 +/- 1.8 and 15.1 +/- 2.2 mumol . kg-1 . min-1, respectively. Near steady-state values were observed toward the end of the first two work loads. Ra and Rd values were 32.8 +/- 2.3 and 37.4 +/- 1.3 mumol . kg-1 . min-1 during min 5 and 6 at 300 kg . m . min-1 and were 59.1 +/- 2.6 and 55.4 +/- 2.3 mumol . kg-1 . min-1 during min 5 and 6 at 600 kg . m . min-1. Ra was significantly greater than Rd at both 900 and 1,200 kg . m . min-1. Ra and Rd averaged 145.4 +/- 10.5 and 110.2 +/- 5.6 mumol . kg-1 . min-1, respectively, during the last 2 min at 900 kg . m . min-1, and 309.4 +/- 20.8 and 169.7 +/- 10.6 mumol . kg-1 . min-1, respectively, at 1,200 kg . m . min-1.(ABSTRACT TRUNCATED AT 250 WORDS)

1985 ◽  
Vol 249 (5) ◽  
pp. C409-C416 ◽  
Author(s):  
R. S. Thies ◽  
L. J. Mandel

Glucose catabolism by glycolysis and the Krebs cycle was examined in the isolated rabbit cornea incubated with [6-14C]glucose. The production of [14C]lactate and 14CO2 from this substrate provided minimal values for the fluxes through these pathways since the tissue was in metabolic steady state but not isotopic steady state during the 40-min incubation. The specific activity of lactate under these conditions was one-third of that for [6-14C]glucose, and label dilution by exchange with unlabeled alanine was minimal, suggesting that glycogen degradation was primarily responsible for this dilution of label in the Embden-Meyerhof pathway. In addition, considerable label accumulation was found in glutamate and aspartate. Calculations revealed that these endogenous amino acid pools were not isotopically equilibrated after the incubation period, suggesting that they were responsible for the isotopic nonsteady state by exchange dilution through transaminase reactions with labeled intermediates. An estimate of glucose oxidation by the Krebs cycle, which was corrected for label dilution by exchange, indicated that glucose could account for most of the measured corneal oxygen consumption that was coupled to oxidative phosphorylation. A minor component of this respiration could not be accounted for by glucose or glycogen oxidation. Additional experiments suggested that endogenous fatty acid oxidation was probably also active under these conditions. Finally, reciprocal changes in plasma membrane Na+-K+-ATPase activity induced by ouabain and nystatin were found to concomitantly alter oxygen consumption rates and [14C]lactate production from [6-14C]glucose. These results demonstrated the capacity for regulating glycolysis and the Krebs cycle in response to changing energy demands in the cornea.


1956 ◽  
Vol 184 (3) ◽  
pp. 613-623 ◽  
Author(s):  
A. C. Barger ◽  
V. Richards ◽  
J. Metcalfe ◽  
B. Günther

Oxygen consumption and cardiac output (direct Fick) have been measured in normal dogs at rest and during graded exercise on the treadmill up to a work intensity of 5 mph and 10°. Systemic and pulmonary artery pressures have also been recorded. The changes in cardiac output produced ‘at rest’ by excitement were frequently as large as those induced by moderate exercise. A short bout of exercise followed by a rest period was far more efficacious in producing lower and more uniform results during rest and subsequent exercise than a prolonged rest period alone. Under such conditions the ‘steady state’ was reached in 3 minutes or less of exercise. The linear relation between oxygen consumption and cardiac output during exercise in the dog is similar to that observed in man, and in the horse. The possible significance of this similarity is discussed and it is suggested that the data are consistent with the hypothesis that the increase in blood flow during exercise is largely the increase in muscle flow with a constant arteriovenous oxygen difference of approximately 14 vol. %.


Circulation ◽  
1995 ◽  
Vol 91 (12) ◽  
pp. 2924-2932 ◽  
Author(s):  
Alain Cohen-Solal ◽  
Thierry Laperche ◽  
Daniel Morvan ◽  
Michel Geneves ◽  
Bernard Caviezel ◽  
...  

Author(s):  
J. M. Scott

The physiological rates of a normally omnivorous marine rotifer, Encentrum linnhei, were measured under the steady-state chemostat conditions in which the physiological state of the food-algae was kept constant whilst the rotifer growth rate was changed to preset levels. The specific clearance rate ranged between 50 and 100 μl/μg rotifer C/day (1.5–3.0 μ/rot/day) and varied hyperbolically with growth rate, a similar curve was obtained with the specific ingestion rate which varied between 1–2 μg C/μg rot C/day. A mean respiration rate of 0.45 μg C/μg rot C/day was obtained from oxygen consumption measurements. About 60‰ of ingested energy was found to be egested as paniculate matter and 9–4 °0 dissipated as heat, the latter comparing with a theoretical figure of 4–5‰.From rates, transfer efficiencies were obtained giving a mean net growth efficiency (K2) of 38‰ and a mean overall growth efficiency (K1 of 15‰. A curvilinear increase of Kl with growth rate contrasts with linear and hyperbolic responses found with brachionid rotifers.


1980 ◽  
Vol 238 (5) ◽  
pp. E473-E479 ◽  
Author(s):  
D. E. Matthews ◽  
K. J. Motil ◽  
D. K. Rohrbaugh ◽  
J. F. Burke ◽  
V. R. Young ◽  
...  

Leucine metabolism in vivo can be determined from a primed, continuous infusion of L-[1-13C]leucine by measuring, at isotopic steady state, plasm [-13C]leucine enrichment, expired 13CO2 enrichment, and CO2 production rate. With an appropriate priming dose of L-[1-13C]leucine and NaH13CO3, isotopic steady state is reached in less than 2 h, and the infusion is completed in 4 h. The method can determine rates of leucine turnover, oxidation, and incorporation into protein with typical relative uncertainties of 2, 10, and 4%, respectively. The method requires no more than 1 ml of blood and uses stable isotope rather than radioisotope techniques. Thus, the method is applicable to studies of human beings of all ages. L-[1-13C]leucine may be infused with a second amino acid labeled with 15N for simultaneous determination of the kinetics of two amino acids.


Sports ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 154 ◽  
Author(s):  
Paul Hafen ◽  
Pat Vehrs

The maximal lactate steady state (MLSS) is one of the factors that differentiates performance in aerobic events. The purpose of this study was to investigate the sex differences in oxygen consumption (VO2), heart rate (HR), and the respiratory exchange ratio (RER) at the MLSS in well-trained distance runners. Twenty-two (12 female, 10 male) well-trained distance runners (23 ± 5.0 years) performed multiple 30-min steady-state runs to determine their MLSS, during which blood lactate and respiratory gas exchange measures were taken. To interpret the MLSS intensity as a training tool, runners completed a time-to-exhaustion (TTE) run at their MLSS. The relative intensity at which the MLSS occurred was identical between males and females according to both oxygen consumption (83 ± 5 %O2max) and heart rate (89 ± 7 %HRmax). However, female runners displayed a significantly lower RER at MLSS compared to male runners (p < 0.0001; 0.84 ± 0.02 vs. 0.88 ± 0.04, respectively). There was not a significant difference in TTE at MLSS between males (79 ± 17 min) and females (80 ± 25 min). Due to the observed difference in the RER at the MLSS, it is suggested that RER derived estimates of MLSS be sex-specific. While the RER data suggest that the MLSS represents different metabolic intensities for males and females, the relative training load of MLSS appears to be similar in males and female runners.


1987 ◽  
Vol 252 (3) ◽  
pp. E431-E438 ◽  
Author(s):  
J. M. Miles ◽  
M. G. Ellman ◽  
K. L. McClean ◽  
M. D. Jensen

The accuracy of tracer methods for estimating free fatty acid (FFA) rate of appearance (Ra), either under steady-state conditions or under non-steady-state conditions, has not been previously investigated. In the present study, endogenous lipolysis (traced with 14C palmitate) was suppressed in six mongrel dogs with a high-carbohydrate meal 10 h before the experiment, together with infusions of glucose, propranolol, and nicotinic acid during the experimental period. Both steady-state and non-steady-state equations were used to determine oleate Ra ([3H]oleate) before, during, and after a stepwise infusion of an oleic acid emulsion. Palmitate Ra did not change during the experiment. Steady-state equations gave the best estimates of oleate inflow approximately 93% of the known oleate infusion rate overall, while errors in tracer estimates of inflow were obtained when non-steady-state equations were used. The metabolic clearance rate of oleate was inversely related to plasma concentration (P less than 0.01). In conclusion, accurate estimates of FFA inflow were obtained when steady-state equations were used, even under conditions of abrupt and recent changes in Ra. Non-steady-state equations, in contrast, may provide erroneous estimates of inflow. The decrease in metabolic clearance rate during exogenous infusion of oleate suggests that FFA transport may follow second-order kinetics.


1982 ◽  
Vol 53 (5) ◽  
pp. 1116-1124 ◽  
Author(s):  
R. P. Cole ◽  
P. C. Sukanek ◽  
J. B. Wittenberg ◽  
B. A. Wittenberg

The effect of myoglobin on oxygen consumption and ATP production by isolated rat skeletal muscle mitochondria was studied under steady-state conditions of oxygen supply. A method is presented for the determination of steady-state oxygen consumption in the presence of oxygen-binding proteins. Oxygen consumed in suspensions of mitochondria was replenished continuously by transfer from a flowing gas phase. Liquid-phase oxygen pressure was measured with an oxygen electrode; the gas-phase oxygen concentration was held constant at a series of fixed values. Oxygen consumption was determined from the characteristic response time of the system and the difference in the steady-state gas- and liquid-phase oxygen concentrations. ATP production was determined from the generation of glucose 6-phosphate in the presence of hexokinase. During steady-state mitochondrial oxygen consumption, the oxygen pressure in the liquid phase is enhanced when myoglobin is present. Functional myoglobin present in the solution had no effect on the relation of mitochondrial respiration and ATP production to liquid-phase oxygen pressure. Myoglobin functions in this system to enhance the flux of oxygen into the myoglobin-containing phase. Myoglobin may function in a similar fashion in muscle by increasing oxygen flux into myocytes.


Sign in / Sign up

Export Citation Format

Share Document