Roles of PI 3-kinase and Ras on insulin-stimulated glucose transport in 3T3-L1 adipocytes

1997 ◽  
Vol 272 (2) ◽  
pp. E326-E331 ◽  
Author(s):  
H. Katagiri ◽  
T. Asano ◽  
K. Inukai ◽  
T. Ogihara ◽  
H. Ishihara ◽  
...  

The dominant negative p85alpha regulatory subunit (delta p85alpha) of phosphatidylinositol (PI) 3-kinase or dominant negative Ras (N17Ras) was overexpressed in 3T3-L1 adipocytes using an adenovirus-mediated gene transduction system. Functional expression of delta p85alpha and N17Ras was confirmed by marked inhibition of insulin-stimulated PI 3-kinase activity and mitogen-activated protein kinase activity, respectively. N17Ras expression did not affect glucose transport activity, whereas delta p85alpha expression inhibited insulin-stimulated glucose transport with impairment of GLUT-4 translocation, although inhibition of glucose transport activity was less remarkable than that of PI 3-kinase activity in delta p85alpha-expressing cells. Thus the Ras signaling pathway does not play a major part in either translocation or intrinsic activity of glucose transporters, but PI 3-kinase activation, via phosphotyrosyl proteins and heterodimeric PI 3-kinase, plays a pivotal role in insulin-stimulated glucose transport. However, a discrepancy was observed between PI 3-kinase activity and glucose transport activity, suggesting a possibility that a different pathway(s) is involved in insulin-stimulated intrinsic activity of glucose transporters.

1992 ◽  
Vol 283 (3) ◽  
pp. 795-801 ◽  
Author(s):  
A Schürmann ◽  
W Rosenthal ◽  
G Schultz ◽  
H G Joost

We have previously reported that guanine nucleotides inhibit glucose transport activity reconstituted from adipocyte membrane fractions. In order to further investigate the hypothetical involvement of guanine-nucleotide-binding proteins (GTP-binding proteins) in the regulation of insulin-sensitive glucose transport activity, we studied their subcellular distribution in adipocytes treated or not with insulin. Adipocytes were homogenized and fractionated to yield plasma membranes (PM) and a Golgi-enriched fraction of intracellular membranes (low-density microsomes, LDM). In these membrane fractions, total guanosine 5′-[gamma-[35S]thio]triphosphate ([35S]GTP[S]) binding, alpha- and beta-subunits of heterotrimeric G-proteins, proto-oncogenes Ha-ras and K-ras, and 23-28 kDa GTP-binding proteins were assayed. The levels of alpha s and alpha i (the alpha-subunits of Gs and Gi) were approx. 8-fold lower in LDM than in PM; beta-subunits, Ha-ras and K-ras were not detectable in LDM. Total GTP[S]-binding sites and 23-28 kDa GTP-binding proteins were present in LDM in approximately the same concentrations as in PM. Insulin gave rise to the characteristic translocation of glucose transporters, but failed to alter the subcellular distribution of any of the GTP-binding proteins. Fractionation of the LDM on a discontinuous sucrose gradient revealed that alpha s and alpha i, as detected with antiserum against a common peptide sequence (alpha common), and the bulk of the 23-28 kDa G-proteins sedimented at different sucrose densities. None of the GTP-binding proteins co-sedimented with glucose transporters. Furthermore, the inhibitory effect of GTP[S] on the reconstituted transport activity was lost in the peak fractions of glucose transporters partially purified on the sucrose gradient. These data indicate that LDM from adipocytes contain several GTP-binding proteins in discrete vesicle populations. However, the intracellular GTP-binding proteins are not tightly associated with the vesicles containing the glucose transporter.


Stem Cells ◽  
2006 ◽  
Vol 24 (5) ◽  
pp. 1399-1406 ◽  
Author(s):  
Myriam Aouadi ◽  
Frédéric Bost ◽  
Leslie Caron ◽  
Kathiane Laurent ◽  
Yannick Le Marchand Brustel ◽  
...  

1989 ◽  
Vol 257 (4) ◽  
pp. E520-E530
Author(s):  
M. F. Hirshman ◽  
L. J. Wardzala ◽  
L. J. Goodyear ◽  
S. P. Fuller ◽  
E. D. Horton ◽  
...  

We studied the mechanism for the increase in glucose transport activity that occurs in adipose cells of exercise-trained rats. Glucose transport activity, glucose metabolism, and the subcellular distribution of glucose transporters were measured in adipose cells from rats raised in wheel cages for 6 wk (mean total exercise 350 km/rat), age-matched sedentary controls, and young sedentary controls matched for adipose cell size. Basal rates of glucose transport and metabolism were greater in cells from exercise-trained rats compared with young controls, and insulin-stimulated rates were greater in the exercise-trained rats compared with both age-matched and young controls. The numbers of plasma membrane glucose transporters were not different among groups in the basal state; however, with insulin stimulation, cells from exercise-trained animals had significantly more plasma membrane transporters than young controls or age-matched controls. Exercise-trained rats also had more low-density microsomal transporters than control rats in the basal state. When the total number of glucose transporters/cell was calculated, the exercise-trained rats had 42% more transporters than did either control group. These studies demonstrate that the increased glucose transport and metabolism observed in insulin-stimulated adipose cells from exercise-trained rats is due, primarily, to an increase in the number of plasma membrane glucose transporters translocated from an enlarged intracellular pool.


2000 ◽  
Vol 20 (21) ◽  
pp. 8035-8046 ◽  
Author(s):  
Kohjiro Ueki ◽  
Petra Algenstaedt ◽  
Franck Mauvais-Jarvis ◽  
C. Ronald Kahn

ABSTRACT Phosphoinositide (PI) 3-kinase is a key mediator of insulin-dependent metabolic actions, including stimulation of glucose transport and glycogen synthesis. The gene for the p85α regulatory subunit yields three splicing variants, p85α, AS53/p55α, and p50α. All three have (i) a C-terminal structure consisting of two Src homology 2 domains flanking the p110 catalytic subunit-binding domain and (ii) a unique N-terminal region of 304, 34, and 6 amino acids, respectively. To determine if these regulatory subunits differ in their effects on enzyme activity and signal transduction from insulin receptor substrate (IRS) proteins under physiological conditions, we expressed each regulatory subunit in fully differentiated L6 myotubes using adenovirus-mediated gene transfer with or without coexpression of the p110α catalytic subunit. PI 3-kinase activity associated with p50α was greater than that associated with p85α or AS53. Increasing the level of p85α or AS53, but not p50α, inhibited both phosphotyrosine-associated and p110-associated PI 3-kinase activities. Expression of a p85α mutant lacking the p110-binding site (Δp85) also inhibited phosphotyrosine-associated PI 3-kinase activity but not p110-associated activity. Insulin stimulation of two kinases downstream from PI-3 kinase, Akt and p70 S6 kinase (p70S6K), was decreased in cells expressing p85α or AS53 but not in cells expressing p50α. Similar inhibition of PI 3-kinase, Akt, and p70S6K was observed, even when p110α was coexpressed with p85α or AS53. Expression of p110α alone dramatically increased glucose transport but decreased glycogen synthase activity. This effect was reduced when p110α was coexpressed with any of the three regulatory subunits. Thus, the three different isoforms of regulatory subunit can relay the signal from IRS proteins to the p110 catalytic subunit with different efficiencies. They also negatively modulate the PI 3-kinase catalytic activity but to different extents, dependent on the unique N-terminal structure of each isoform. These data also suggest the existence of a mechanism by which regulatory subunits modulate the PI 3-kinase-mediated signals, independent of the kinase activity, possibly through subcellular localization of the catalytic subunit or interaction with additional signaling molecules.


Sign in / Sign up

Export Citation Format

Share Document