scholarly journals β3-Adrenergic agonist induces a functionally active uncoupling protein in fat and slow-twitch muscle fibers

1998 ◽  
Vol 274 (3) ◽  
pp. E469-E475 ◽  
Author(s):  
Toshihide Yoshida ◽  
Tsunekazu Umekawa ◽  
Kenzo Kumamoto ◽  
Naoki Sakane ◽  
Akinori Kogure ◽  
...  

The mitochondrial uncoupling protein (UCP) has usually been found only in brown adipose tissue. We recently observed that a chronic administration of the β3-adrenergic agonist CL-316,243 (CL) induced the ectopic expression of UCP in white fat and skeletal muscle in genetic obese yellow KK mice. The aim of the present study was to examine whether UCP could be induced in nongenetic obese animals produced by neonatal injections of monosodiuml-glutamate (MSG). The daily subcutaneous injection of CL (0.1 mg/kg) to MSG-induced obese mice for 2 wk caused significant reductions of body weight (15%) and white fat pad weight (58%). Northern and Western blot analyses showed that CL induced significant expressions of UCP in the white fat and muscle, as well as in brown fat. Immunohistochemical observations revealed that the UCP stains in white fat were localized on multilocular cells and that those in muscle were localized on slow-twitch fibers rich in mitochondria. Immunoelectron microscopy confirmed the mitochondrial localization of UCP in the myocytes. The guanosine 5′-diphosphate (GDP) binding to mitochondria in brown fat doubled after the CL treatment. Moreover, significant GDP binding was detected in the white fat and muscle of the CL-treated mice, at about one-fourth and one-thirteenth the activity of brown fat, respectively, suggesting that ectopically expressed UCP is functionally active. We concluded that the β3-adrenergic agonist CL can induce functionally active UCP in white fat and slow-twitch muscle fibers of obese mice.

1996 ◽  
Vol 97 (12) ◽  
pp. 2898-2904 ◽  
Author(s):  
I Nagase ◽  
T Yoshida ◽  
K Kumamoto ◽  
T Umekawa ◽  
N Sakane ◽  
...  

1994 ◽  
Vol 266 (6) ◽  
pp. R1907-R1915 ◽  
Author(s):  
D. V. Muralidhara ◽  
M. Desautels

The objective of this work was to evaluate how obesity would influence the changes in brown fat (BAT) thermogenic capacity during fasting-refeeding. Mice fed either chow or chow + high-fat supplement for 6 wk had body weights of 34 +/- 1 and 43 +/- 1 g, respectively. They were fasted for 48 h followed by ad libitum refeeding for up to 5 days. Loss of carcass fat was similar between food-deprived mice previously fed chow or chow + high-fat supplement. However, even after a 48-h fast, obese mice still had a carcass fat content much greater than that of chow-fed mice. Brown fat atrophy caused by food deprivation was characterized by reductions in tissue weight, fat, mitochondrial proteins and uncoupling protein (UCP), without change in tissue DNA. Obesity did not alter the rate or extent of brown fat atrophy. Upon refeeding 48-h-fasted lean and obese mice, there was recovery of BAT thermogenic capacity that was similar between the two groups. In chow-fed mice, an intact neural input was essential for recovery of BAT thermogenic capacity during refeeding. These results indicate that food deprivation triggers an immediate adaptive response in mice previously fed chow or chow + a high-fat supplement and that reduction in brown fat thermogenic capacity during fasting and its recovery during refeeding appear little affected by the size of the animal energy reserves.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Won Kon Kim ◽  
Baek-Soo Han

Abstract Brown adipocytes play important roles in the regulation of energy homeostasis by uncoupling protein 1-mediated non-shivering thermogenesis. Recent studies suggest that brown adipocytes as novel therapeutic targets for combating obesity and associated diseases, such as type II diabetes. However, the molecular mechanisms underlying brown adipocyte differentiation and function are not fully understood. We employed previous findings obtained through proteomic studies performed to assess proteins displaying altered levels during brown adipocyte differentiation. Here, we performed assays to determine the functional significance of their altered levels during brown adipogenesis and development. We identified isocitrate dehydrogenase 1 (IDH1) as upregulated during brown adipocyte differentiation, with subsequent investigations revealing that ectopic expression of IDH1 inhibited brown adipogenesis, whereas suppression of IDH1 levels promoted differentiation of brown adipocytes. Additionally, Idh1 overexpression resulted in increased levels of intracellular α-ketoglutarate (α-KG) and inhibited the expression of genes involved in brown adipogenesis. Exogenous treatment with α-KG reduced brown adipogenesis during the early phase of differentiation, and ChIP analysis revealed that IDH1-mediated α-KG reduced trimethylation of histone H3 lysine 4 in the promoters of genes associated with brown adipogenesis. Furthermore, administration of α-KG decreased adipogenic gene expression by modulating histone methylation in brown adipose tissues of mice. These results suggested that the IDH1–α-KG axis plays an important role in regulating brown adipocyte differentiation and might represent a therapeutic target for treating metabolic diseases.


1984 ◽  
Vol 247 (1) ◽  
pp. R160-R166 ◽  
Author(s):  
Z. Glick ◽  
S. J. Wickler ◽  
J. S. Stern ◽  
B. A. Horwitz

It was previously observed that a single low-protein, high-carbohydrate test meal results in increased in vitro thermic activity of brown adipose tissue. In the present study, we have examined whether such a meal increases the in vivo thermic activity, estimated from measurement of the rate of blood flow. With radioactively labeled microspheres, blood flows into brown fat and several other tissues were determined in meal-deprived (n = 11) and meal-fed (n = 11) rats. The microspheres were injected into the heart of anesthetized animals about 2-2.5 h after the test meal, one injection in the resting state and one during maximal norepinephrine stimulation. In the resting state, blood flow per gram tissue more than doubled in the brown fat (P less than 0.05) and was increased more than 50% in the heart (P less than 0.01) of the fed group. Blood flows into liver and retroperitoneal white fat were reduced by 40 (P less than 0.01) and 30%, respectively, in the fed group. During norepinephrine infusion, significant meal-associated increases in blood flow were evident only in brown fat (P less than 0.05) and the soleus muscle (P less than 0.05), whereas a significant decrease was observed in the liver (P less than 0.05). No statistically significant meal-associated changes in norepinephrine-stimulated blood flow were found in the other tissues examined (i.e., heart, gastrocnemius, and diaphragm muscles, kidneys, white fat, spleen, and adrenals). Our in vivo data thus support the view that brown fat plays a role in the thermic effect of a meal.


1989 ◽  
Vol 259 (2) ◽  
pp. 555-559 ◽  
Author(s):  
M Giralt ◽  
L Casteilla ◽  
O Viñas ◽  
T Mampel ◽  
R Iglesias ◽  
...  

Iodothyronine 5'-deiodinase activity appears to be a type I enzyme in bovine brown adipose tissue, on the basis of its high Km for 3,3',5'-tri-iodothyronine (‘reverse T3’) (in the micromolar range) and sensitivity to propylthiouracil inhibition. This enzyme activity is already detectable in perirenal adipose tissue of bovine fetuses in the second month of gestation, reaches peak values around the seventh month of fetal life, declines before birth, becomes lower after parturition and finally undetectable in the adult cow. Iodothyronine 5'-deiodinase activity is present in the pericardic, peritoneal and intermuscular adipose depots of the neonatal calf, but it is always undetectable in the subcutaneous adipose tissue. It is concluded that iodothyronine 5'-deiodinase is a specific feature of brown fat in the bovine species that is not shared by white adipose tissue. white adipose tissue. Peak values of 5'-deiodinating activity appear as an early event in the prenatal differentiation programme of bovine brown-fat cells as they occur when uncoupling-protein-gene expression first starts.


Sign in / Sign up

Export Citation Format

Share Document