LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice

2002 ◽  
Vol 282 (1) ◽  
pp. E207-E214 ◽  
Author(s):  
Sandra A. Schreyer ◽  
Cynthia Vick ◽  
Theodore C. Lystig ◽  
Paul Mystkowski ◽  
Renée C. LeBoeuf

The aim of this study was to determine whether phenotypes associated with type 2 diabetes are altered in dyslipidemic obese mice. C57BL/6 wild-type, low-density lipoprotein (LDL) receptor-deficient (LDLR−/−), and apolipoprotein E-deficient (apoE−/−) mice were fed a high-fat, high-carbohydrate diet (diabetogenic diet), and the development of obesity, diabetes, and hypertriglyceridemia was examined. Wild-type mice became obese and developed hyperglycemia, but not hypertriglyceridemia, in response to this diet. LDLR−/− mice fed the diabetogenic diet became more obese than wild-type mice and developed severe hypertriglyceridemia and hyperleptinemia. Surprisingly, glucose levels were only modestly higher and insulin levels and insulin-to-glucose ratios were not strikingly different from those of wild-type mice. In contrast, diabetogenic diet-fed apoE−/− mice were resistant to changes in glucose and lipid homeostasis despite becoming obese. These data suggest that modifications in lipoprotein profiles associated with loss of the LDL receptor or apoE function have profound and unique consequences on susceptibility to diet-induced obesity and type 2 diabetic phenotypes.

1986 ◽  
Vol 102 (5) ◽  
pp. 1567-1575 ◽  
Author(s):  
K F Kozarsky ◽  
H A Brush ◽  
M Krieger

The structure and processing of low density lipoprotein (LDL) receptors in wild-type and LDL receptor-deficient mutant Chinese hamster ovary cells was examined using polyclonal anti-receptor antibodies. As previously reported for human LDL receptors, the LDL receptors in wild-type Chinese hamster ovary cells were synthesized as precursors which were extensively processed by glycosylation to a mature form. In the course of normal receptor turnover, an apparently unglycosylated portion of the cysteine-rich N-terminal LDL binding domain of the receptor is proteolytically removed. The LDL receptor-deficient mutants fall into four complementation groups, ldlA, ldlB, ldlC, and ldlD; results of the analysis of ldlB, ldlC, and ldlD mutants are described in the accompanying paper (Kingsley, D. M., K. F. Kozarsky, M. Segal, and M. Krieger, 1986, J. Cell. Biol, 102:1576-1585). Analysis of ldlA cells has identified three classes of mutant alleles at the ldlA locus: null alleles, alleles that code for normally processed receptors that cannot bind LDL, and alleles that code for abnormally processed receptors. The abnormally processed receptors were continually converted to novel unstable intracellular intermediates. We also identified a compound-heterozygous mutant and a heterozygous revertant which indicate that the ldlA locus is diploid. In conjunction with other genetic and biochemical data, the finding of multiple mutant forms of the LDL receptor in ldlA mutants, some of which appeared together in the same cell, confirm that the ldlA locus is the structural gene for the LDL receptor.


2010 ◽  
Vol 84 (22) ◽  
pp. 12048-12057 ◽  
Author(s):  
Takayuki Hishiki ◽  
Yuko Shimizu ◽  
Reiri Tobita ◽  
Kazuo Sugiyama ◽  
Kazuya Ogawa ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is a causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV in circulating blood associates with lipoproteins such as very low density lipoprotein (VLDL) and low-density lipoprotein (LDL). Although these associations suggest that lipoproteins are important for HCV infectivity, the roles of lipoproteins in HCV production and infectivity are not fully understood. To clarify the roles of lipoprotein in the HCV life cycle, we analyzed the effect of apolipoprotein E (ApoE), a component of lipoprotein, on virus production and infectivity. The production of infectious HCV was significantly reduced by the knockdown of ApoE. When an ApoE mutant that fails to be secreted into the culture medium was used, the amount of infectious HCV in the culture medium was dramatically reduced; the infectious HCV accumulated inside these cells, suggesting that infectious HCV must associate with ApoE prior to virus release. We performed rescue experiments in which ApoE isoforms were ectopically expressed in cells depleted of endogenous ApoE. The ectopic expression of the ApoE2 isoform, which has low affinity for the LDL receptor (LDLR), resulted in poor recovery of infectious HCV, whereas the expression of other isoforms, ApoE3 and ApoE4, rescued the production of infectious virus, raising it to an almost normal level. Furthermore, we found that the infectivity of HCV required both the LDLR and scavenger receptor class B, member I (SR-BI), ligands for ApoE. These findings indicate that ApoE is an essential apolipoprotein for HCV infectivity.


2004 ◽  
Vol 279 (50) ◽  
pp. 52526-52534 ◽  
Author(s):  
Suzanne J. A. Korporaal ◽  
Ingrid A. M. Relou ◽  
Miranda van Eck ◽  
Vera Strasser ◽  
Martineke Bezemer ◽  
...  

Binding of low density lipoprotein (LDL) to platelets enhances platelet responsiveness to various aggregation-inducing agents. However, the identity of the platelet surface receptor for LDL is unknown. We have previously reported that binding of the LDL component apolipoprotein B100 to platelets induces rapid phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Here, we show that LDL-dependent activation of this kinase is inhibited by receptor-associated protein (RAP), an inhibitor of members of the LDL receptor family. Confocal microscopy revealed a high degree of co-localization of LDL and a splice variant of the LDL receptor family member apolipoprotein E receptor-2 (apoER2′) at the platelet surface, suggesting that apoER2′ may contribute to LDL-induced platelet signaling. Indeed, LDL was unable to induce p38MAPKactivation in platelets of apoER2-deficient mice. Furthermore, LDL bound efficiently to soluble apoER2′, and the transient LDL-induced activation of p38MAPKwas mimicked by an anti-apoER2 antibody. Association of LDL to platelets resulted in tyrosine phosphorylation of apoER2′, a process that was inhibited in the presence of PP1, an inhibitor of Src-like tyrosine kinases. Moreover, phosphorylated but not native apoER2′ co-precipitated with the Src family member Fgr. This suggests that exposure of platelets to LDL induces association of apoER2′ to Fgr, a kinase that is able to activate p38MAPK. In conclusion, our data indicate that apoER2′ contributes to LDL-dependent sensitization of platelets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amra Jujić ◽  
J. Korduner ◽  
H. Holm ◽  
G. Engström ◽  
E. Bachus ◽  
...  

AbstractObesity associates with reduced life expectancy, type 2 diabetes, hypertension and cardiovascular disease, and is characterized by chronic inflammation. Phosphorylcholine (PC) is an epitope on oxidized low-density lipoprotein, dead cells and some microorganisms. Antibodies against PC (anti-PC) have anti-inflammatory properties. Here, we explored the role of anti-PC in hospitalized versus non-hospitalized obese. One-hundred-and-twenty-eight obese (BMI ≥ 30 kg/m2) individuals (59.8 (± 5.5) years, 53.9% women) from the Malmö Diet and Cancer Cardiovascular Cohort were examined and IgM, IgG1 and IgG2 anti-PC were analyzed by ELISA. Individuals with at least one recorded history of hospitalization prior to study baseline were considered hospitalized obese (HO). Associations between IgM, IgG1 and IgG2 anti-PC and HO (n = 32)/non-hospitalized obese (NHO) (n = 96), but also with metabolic syndrome and diabetes were analysed using logistic regressions. Both IgM and IgG1 anti-PC were inversely associated with HO, also after controlling for age and sex. When further adjusted for waist circumference, systolic blood pressure, glucose levels and smoking status, only IgG1 anti-PC remained significantly associated with HO. In multivariate models, each 1 standard deviation of increment in anti-PC IgG1 levels was inversely associated with prevalence of HO (odds ratio 0.57; CI 95% 0.33–0.98; p = 0.044). IgG2 anti-PC did not show any associations with HO. Low levels of IgM and IgG1 anti-PC are associated with higher risk of being a HO individual independent of sex and age, IgG1 anti-PC also independently of diabetes and metabolic syndrome. The anti-inflammatory properties of these antibodies may be related to inflammation in obesity and its complications.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1549-1549
Author(s):  
Jan-Willem N. Akkerman ◽  
Suzanne J.A. Korporaal ◽  
Ingrid A.M. Relou ◽  
Miranda Van Eck ◽  
Martineke Bezemer ◽  
...  

Abstract The interaction of platelets with low-density lipoprotein (LDL) plays an important role in the pathogenesis of atherosclerosis and thrombosis. Previously, we have shown that native LDL (nLDL) is a mild activator of platelets increasing their sensitivity to aggregation-inducing agents. Binding of nLDL to platelets was saturable, reversible and initiated signal transduction to p38MAPK suggesting the involvement of a receptor. A peptide mimic of the B-site in apoB100 resembled nLDL in its platelet-activating properties, suggesting that the receptor is a member of the LDL-receptor family. Platelets from familial hypercholesterolemia patients, who lack or have a defective apoB/E receptor, responded normally to nLDL and an antibody against this receptor left nLDL-induced activation of normal platelets undisturbed, excluding the involvement of the classical LDL (apoB/E)-receptor. In this study, we provide evidence that nLDL initiates platelet signaling to p38MAPK via a splice variant of the LDL-receptor family member Apolipoprotein E Receptor 2 (ApoER2′). This conclusion is based on (i) blockade of nLDL-induced p38MAPK activation by receptor-associated protein (RAP), an inhibitor of ligand binding to members of the LDL-receptor family, (ii) confocal microscopy showing a high degree of co-localization of nLDL and ApoER2′ at the platelet surface, (iii) binding of both nLDL and the B-site peptide to soluble ApoER2′, (iv) activation of p38MAPK by an anti-ApoER2 antibody with similar kinetics as nLDL, and (v) tyrosine phosphorylation of ApoER2′ upon binding of nLDL. The nLDL-induced phosphorylation of ApoER2′ could be abolished by PP1, an inhibitor of Src-like tyrosine kinases. In the absence of PP1, ApoER2′ phosphorylation was accompanied by co-association with the Src-family member Fgr. We conclude that binding of nLDL to platelets involves ApoER2′. Upon nLDL binding, the receptor is phosphorylated which induces the recruitment of Fgr, a kinase known to activate p38MAPK. The ApoER2′-Fgr complex subsequently activates p38MAPK, an upstream element in the formation of thromboxane A2 that primes the platelets to further stimulation by aggregation-inducing agents.


1988 ◽  
Vol 252 (2) ◽  
pp. 553-561 ◽  
Author(s):  
E E T Windler ◽  
J Greeve ◽  
W H Daerr ◽  
H Greten

Binding and uptake of rat chylomicrons of different metabolic stages by the hepatic low-density-lipoprotein (LDL) receptor were studied. Pure chylomicrons, characterized by apolipoprotein B-48 devoid of contaminating B-100, were labelled in their cholesteryl esters. Lymph chylomicrons and serum chylomicrons, enriched in apolipoprotein E and the C-apolipoproteins, bound poorly to rat hepatic membranes. In contrast, chylomicron remnants, containing the apolipoproteins B-48 and E, bound with high affinity. Specific binding of remnants was virtually completely competed for by LDL free of apolipoprotein E. In addition, in ligand blots both remnants and LDL associated with the same protein with an Mr characteristic of the LDL receptor. Uptake of remnants during a single pass through isolated perfused rat livers was decreased to about 50% by an excess of LDL. It is concluded that rat chylomicron remnants are a ligand of the hepatic LDL receptor. The much higher affinity as compared with LDL is mediated by apolipoprotein E but not B-48, and is inhibited by the C-apolipoproteins. This explains why serum chylomicrons are not taken up by the liver, whereas remnants are rapidly removed from the circulation. Results from experiments in vivo suggest that the LDL receptor makes an important contribution to the hepatic uptake of remnants and may be the principal binding site of the liver responsible for remnant removal.


2019 ◽  
Vol 20 (10) ◽  
pp. 1029-1040 ◽  
Author(s):  
Xinjie Lu

Background:One of the important factors in Low-Density Lipoprotein (LDL) metabolism is the LDL receptor (LDLR) by its capacity to bind and subsequently clear cholesterol derived from LDL (LDL-C) in the circulation. Proprotein Convertase Subtilisin-like Kexin type 9 (PCSK9) is a newly discovered serine protease that destroys LDLR in the liver and thereby controls the levels of LDL in plasma. Inhibition of PCSK9-mediated degradation of LDLR has, therefore, become a novel target for lipid-lowering therapy.Methods:We review the current understanding of the structure and function of PCSK9 as well as its implications for the treatment of hyperlipidemia and atherosclerosis.Results:New treatments such as monoclonal antibodies against PCSK9 may be useful agents to lower plasma levels of LDL and hence prevent atherosclerosis.Conclusion:PCSK9's mechanism of action is not yet fully clarified. However, treatments that target PCSK9 have shown striking early efficacy and promise to improve the lives of countless patients with hyperlipidemia and atherosclerosis.


2019 ◽  
Vol 15 (3) ◽  
pp. 213-223 ◽  
Author(s):  
Rabia Nabi ◽  
Sahir Sultan Alvi ◽  
Mohd. Saeed ◽  
Saheem Ahmad ◽  
Mohammad Salman Khan

Introduction: Diabetes Mellitus (DM) acts as an absolute mediator of cardiovascular risk, prompting the prolonged occurrence, size and intricacy of atherosclerotic plaques via enhanced Advanced Glycation Endproducts (AGEs) formation. Moreover, hyperglycemia is associated with enhanced glyco-oxidized and oxidized Low-Density Lipoprotein (LDL) possessing greater atherogenicity and decreased the ability to regulate HMG-CoA reductase (HMG-R). Although aminoguanidine (AG) prevents the AGE-induced protein cross-linking due to its anti-glycation potential, it exerts several unusual pharmaco-toxicological effects thus restraining its desirable therapeutic effects. HMG-R inhibitors/statins exhibit a variety of beneficial impacts in addition to the cholesterol-lowering effects. Objective: Inhibition of AGEs interaction with receptor for AGEs (RAGE) and glyco-oxidized-LDL by HMG-R inhibitors could decrease LDL uptake by LDL-receptor (LDL-R), regulate cholesterol synthesis via HMG-R, decrease oxidative and inflammatory stress to improve the diabetes-associated complications. Conclusion: Current article appraises the pathological AGE-RAGE concerns in diabetes and its associated complications, mainly focusing on the phenomenon of both circulatory AGEs and those accumulating in tissues in diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy, discussing the potential protective role of HMG-R inhibitors against diabetic complications.


1986 ◽  
Vol 234 (1) ◽  
pp. 245-248 ◽  
Author(s):  
W Jessup ◽  
G Jurgens ◽  
J Lang ◽  
H Esterbauer ◽  
R T Dean

The incorporation of the lipid peroxidation product 4-hydroxynonenal into low-density lipoprotein (LDL) increases the negative charge of the particle, and decreases its affinity for the fibroblast LDL receptor. It is suggested that this modification may occur in vivo, and might promote atherogenesis.


Sign in / Sign up

Export Citation Format

Share Document