scholarly journals The role of plasminogen activator inhibitor-1 in gastric mucosal protection

2013 ◽  
Vol 304 (9) ◽  
pp. G814-G822 ◽  
Author(s):  
Susan Kenny ◽  
Islay Steele ◽  
Suzanne Lyons ◽  
Andrew R. Moore ◽  
Senthil V. Murugesan ◽  
...  

Gastric mucosal health is maintained in response to potentially damaging luminal factors. Aspirin and nonsteroidal anti-inflammatory drugs (NSAIDs) disrupt protective mechanisms leading to bleeding and ulceration. The plasminogen activator system has been implicated in fibrinolysis following gastric ulceration, and an inhibitor of this system, plasminogen activator inhibitor (PAI)-1, is expressed in gastric epithelial cells. In Helicobacter pylori-negative patients with normal gastric histology taking aspirin or NSAIDs, we found elevated gastric PAI-1 mRNA abundance compared with controls; the increase in patients on aspirin was independent of whether they were also taking proton pump inhibitors. In the same patients, aspirin tended to lower urokinase plasminogen activator mRNA. Immunohistochemistry indicated PAI-1 localization to epithelial cells. In a model system using MKN45 or AGS-GR cells transfected with a PAI-1 promoter-luciferase reporter construct, we found no evidence for upregulation of PAI-1 expression by indomethacin, and, in fact, cyclooxygenase products such as PGE2 and PGI2 weakly stimulated expression. Increased gastric PAI-1 mRNA was also found in mice following gavage with ethanol or indomethacin, but plasma PAI-1 was unaffected. In PAI-1−/− mice, gastric hemorrhagic lesions in response to ethanol or indomethacin were increased compared with C57BL/6 mice. In contrast, in PAI-1-H/Kβ mice in which PAI-1 is overexpressed in parietal cells, there were decreased lesions in response to ethanol and indomethacin. Thus, PAI-1 expression is increased in gastric epithelial cells in response to mucosal irritants such as aspirin and NSAIDs probably via an indirect mechanism, and PAI-1 acts as a local autoregulator to minimize mucosal damage.

2003 ◽  
Vol 90 (10) ◽  
pp. 611-619 ◽  
Author(s):  
Cristina Banfi ◽  
Johan Auwerx ◽  
Federica Poma ◽  
Elena Tremoli ◽  
Luciana Mussoni

SummaryImpairment of the fibrinolytic system, mostly due to elevated plasma levels of plasminogen activator inhibitor 1 (PAI-1), is often associated with metabolic disorders such as diabetes mellitus and insulin-resistance syndrome. Moreover, insulin, as we have previously shown, directly stimulates PAI-1 production with a mechanism underlying a complex signaling network which ultimately leads to ERK activation.In this study we have analyzed the effects of agonists of the per-oxisome proliferator-activated receptor (PPAR) alpha and gamma on PAI-1 biosynthesis in HepG2 cells in the presence or absence of insulin. The high affinity PPARα agonist, Wy-14,643, increased basal and insulin-stimulated PAI-1 antigen release with a mechanism involving gene transcription. We then investigated whether the MAP kinase pathway also plays a role in the stimulatory properties of Wy-L4,643. Wy-L4,643 increases phosphorylation of ERK and p38 in a time-dependent manner without affecting that of SAPK/JNK or ERK5. Moreover, the MEK (ERK kinase) inhibitors, PD98059 and UO126, completely prevented PAI-1 induction by Wy-14,643 without inhibiting the activation of a reporter gene carrying the PPRE element. Interestingly, the addition of p38 inhibitor followed by insulin and Wy-14,643 resulted in a greater than additive stimulation of PAI-1 secretion acting through ERK1/2 phosphorylation.In contrast, the synthetic PPARγ agonist, rosiglitazone, did not change PAI-1 level, although this compound induced transcription from the PPRE-driven luciferase reporter construct.In conclusion, Wy-14,643 induces PAI-1 gene expression, in the presence or absence of insulin, with a mechanism which is independent on PPARα activation and requires signaling through the ERK1/2 signaling pathway.


2011 ◽  
Vol 434 (3) ◽  
pp. 473-482 ◽  
Author(s):  
Nitin Patel ◽  
Stanley M. Tahara ◽  
Punam Malik ◽  
Vijay K. Kalra

PAI-1 (plasminogen activator inhibitor-1) is a key physiological inhibitor of fibrinolysis. Previously, we have reported PlGF (placental growth factor)-mediated transcriptional up-regulation of PAI-1 (SERPINE1) mRNA expression via activation of HIF-1α (hypoxia-inducible factor-1α) and AP-1 (activator protein-1) in HPMVECs (human pulmonary microvascular endothelial cells), which resulted in elevated PAI-1 in humans with SCA (sickle cell anaemia). In the present study, we have identified the role of post-transcriptional mechanism(s) of PlGF-mediated accumulation of PAI-1 mRNA in HPMVECs by examining the role of microRNAs (miRNAs/miRs) in PlGF-induced PAI-1 mRNA stability. Our results show reduced expression of miR-30c and miR-301a, but not of miR-99a, in response to PlGF, which have evolutionarily conserved binding sites in the 3′-UTR (3′-untranslated region) of PAI-1 mRNA. Transfection of anti-miR-30c or anti-miR-301a oligonucleotides resulted in increased PAI-1 mRNA levels, which were increased further with PlGF stimulation. Conversely, overexpression of pre-miR-30c or pre-miR-301a resulted in an attenuation of PlGF-induced PAI-1 mRNA and protein levels. Luciferase reporter assays using wild-type and mutant 3′-UTR constructs confirmed that the PAI-1 3′-UTR is indeed a direct target of miR-30c and miR-301a. Finally, plasma levels of miR-30c and miR-301a were significantly down-regulated in patients with SCA compared with normal controls. These results provide a post-transcriptional regulatory mechanism of PlGF-induced PAI-1 elevation.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Mao Luo ◽  
Qin Wan ◽  
Fei Liu ◽  
Rong Li ◽  
Jiyi Xia ◽  
...  

Objective. PAI-1 mRNA and protein have been detected in human platelets. Recently some miRNAs have been found in human platelets, which are involved in the regulation of genes and the protein synthesis. However, little is known about the physiological roles of individual miRNAs in platelets. In this study, we investigated whether miR30c can regulate platelet-derived plasminogen activator inhibitor-1(PAI-1). Methods and Results. Expression of miR-30c, PAI-1, miR-21 and its targeted gene TIMP1 were found in healthy human leukocyte-depleted platelets (LDPs) by real time PCR. In luciferase reporter gene assay, miR-30c targets the 3’ untranslated region (3’ UTR) of PAI-1 mRNA through a miR-30c binding site. Transfection of miR-30c mimic into MEG-01, a megakaryoblastic cell line, significantly reduced PAI-1 protein level compared with negative control. Inhibition of miR-30c by transfecting miR-30c inhibitor significantly increased PAI-1 protein level. Furthermore, miR-21 expression was significantly down-regulated after transfecting with miR-30c mimic in PAI-1-/- mice LDPs, conversely, the expression of its target gene TIMP1 was significantly up-regulated after transfecting with miR-30c mimic in PAI-1-/- mice LDPs. Conclusion. These results provide a novel regulatory mechanism of miR30c- regulated PAI-1 protein through its influence on the downstream miR21 and its target gene TIMP1 expression in platelet, suggesting that miR-30c might be a potential new strategy for anti-thrombosis.


2001 ◽  
Vol 281 (3) ◽  
pp. L616-L623 ◽  
Author(s):  
Angeline S. Andrew ◽  
Linda R. Klei ◽  
Aaron Barchowsky

Inhalation of nickel dust has been associated with an increased incidence of pulmonary fibrosis. Nickel may promote fibrosis by transcriptionally activating plasminogen activator inhibitor (PAI)-1 and inhibiting fibrinolysis. The current studies examined whether nickel stimulated the PAI-1 promoter though an oxidant-sensitive activator protein (AP)-1 signaling pathway. Addition of nickel to BEAS-2B human airway epithelial cells stimulated intracellular oxidation, induced c-Jun and c-Fos mRNA levels, increased phospho- and total c-Jun protein levels, and elevated PAI-1 mRNA levels over a 24-h time course. Pretreatment of the cells with antioxidants did not affect increased c-Jun protein or PAI-1 mRNA levels. Expression of the dominant negative inhibitor of AP-1, TAM67, prevented nickel-stimulated AP-1 DNA binding, AP-1-luciferase reporter construct activity, and PAI-1 mRNA levels. Overexpression of c-Jun, however, failed to induce the AP-1 luciferase reporter construct or PAI-1 mRNA levels. These data indicated that nickel activated AP-1 through an oxidant-independent pathway and that basal AP-1 is necessary for nickel-induced expression of PAI-1.


2004 ◽  
Vol 32 (1) ◽  
pp. 155-163 ◽  
Author(s):  
B Zietz ◽  
W Drobnik ◽  
H Herfarth ◽  
C Buechler ◽  
J Scholmerich ◽  
...  

Plasminogen activator inhibitor-1 (PAI-1) levels were found to be associated with obesity indicating that adipocytes influence PAI-1 plasma levels. In addition, the 4 G/5 G promoter polymorphism of the PAI-1 gene may modulate PAI-1 transcription. We investigated the transcriptional regulation of the human PAI-1 gene in adipocytes and analyzed the genetic contribution of the 4 G/5 G polymorphism. The PAI-1 promoter was analyzed using electrophoretic mobility shift assays (EMSAs) and luciferase reporter gene assays. A putative binding site for the upstream stimulatory factor-1/2 (USF-1/2) at the polymorphic region of the PAI-1 promoter was identified. The binding of USF-1/2 was studied using nuclear extracts prepared from adipocytes and was similar in all the promoter variants as analyzed by EMSA. A 257 bp PAI-1 promoter fragment including the 4 G/5 G site was transcriptionally active in adipocytes and was not influenced by the polymorphism. The present data indicate for the first time that USF-1/2 is transcriptionally active in differentiated adipocytes. However, USF-1/2 binding activity and PAI-1 transcription are not influenced by the 4 G/5 G-allele. These data possibly explain the observation that PAI-1 secretion from adipose tissue is not influenced by the PAI-1 promoter polymorphism.


2008 ◽  
Vol 76 (9) ◽  
pp. 3992-3999 ◽  
Author(s):  
A. C. Keates ◽  
S. Tummala ◽  
R. M. Peek ◽  
E. Csizmadia ◽  
B. Kunzli ◽  
...  

ABSTRACT Chronic infection with the gastric pathogen Helicobacter pylori significantly increases the risk of developing atrophic gastritis, peptic ulcer disease, and gastric adenocarcinoma. H. pylori strains that possess the cag pathogenicity island, which translocates CagA into the host cells, augment these risks. The aim of this study was to determine the molecular mechanisms through which H. pylori upregulates the expression of plasminogen activator inhibitor 1 (PAI-1), a member of the urokinase activator system that is involved in tumor metastasis and angiogenesis. Levels of PAI-1 mRNA and protein were examined in tissues from H. pylori-infected patients and in vitro using AGS gastric epithelial cells. In vitro, cells were infected with toxigenic cag-positive or nontoxigenic cag-negative strains of H. pylori or isogenic mutants. The amount of PAI-1 secretion was measured by enzyme-linked immunosorbent assay, and mRNA levels were determined using real-time PCR. The regulation of PAI-1 was examined using the extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor and small interfering RNA. Analysis of human biopsy samples revealed an increase in both PAI-1 mRNA and protein levels in patients with H. pylori gastritis compared to those of uninfected controls. Infection of AGS cells with H. pylori significantly increased PAI-1 mRNA expression and the secretion of PAI-1 protein. Moreover, PAI-1 mRNA and protein production was more pronounced when AGS cells were infected by H. pylori strains carrying a functional cag secretion system than when cells were infected by strains lacking this system. PAI-1 secretion was also reduced when cells were infected with either cagE-negative or cagA-negative mutants. The ectopic overexpression of CagA significantly increased the levels of PAI-1 mRNA and protein, whereas blockade of the ERK1/2 pathway inhibited H. pylori-mediated PAI-1 upregulation. These findings suggest that the upregulation of PAI-1 in H. pylori-infected gastric epithelial cells may contribute to the carcinogenic process.


2005 ◽  
Vol 173 (4S) ◽  
pp. 255-255 ◽  
Author(s):  
Hugo H. Davila ◽  
Thomas R. Magee ◽  
Freddy Zuniga ◽  
Jacob Rajfer ◽  
Nestor F. GonzalezCadavid

1999 ◽  
Vol 82 (07) ◽  
pp. 104-108 ◽  
Author(s):  
Franck Paganelli ◽  
Marie Christine Alessi ◽  
Pierre Morange ◽  
Jean Michel Maixent ◽  
Samuel Lévy ◽  
...  

Summary Background: Type 1 plasminogen activator inhibitor (PAI-1) is considered to be risk factor for acute myocardial infarction (AMI). A rebound of circulating PAI-1 has been reported after rt-PA administration. We investigated the relationships between PAI-1 levels before and after thrombolytic therapy with streptokinase (SK) as compared to rt-PA and the patency of infarct-related arteries. Methods and Results: Fifty five consecutive patients with acute MI were randomized to strep-tokinase or rt-PA. The plasma PAI-1 levels were studied before and serially within 24 h after thrombolytic administration. Vessel patency was assessed by an angiogram at 5 ± 1days. The PAI-1 levels increased significantly with both rt-PA and SK as shown by the levels obtained from a control group of 10 patients treated with coronary angioplasty alone. However, the area under the PAI-1 curve was significantly higher with SK than with rt-PA (p <0.01) and the plasma PAI-1 levels peaked later with SK than with rt-PA (18 h versus 3 h respectively). Conversely to PAI-1 levels on admission, the PAI-1 levels after thrombolysis were related to vessel patency. Plasma PAI-1 levels 6 and 18 h after SK therapy and the area under the PAI-1 curve were significantly higher in patients with occluded arteries (p <0.002, p <0.04 and p <0.05 respectively).The same tendency was observed in the t-PA group without reaching significance. Conclusions: This study showed that the PAI-1 level increase is more pronounced after SK treatment than after t-PA treatment. There is a relationship between increased PAI-1 levels after thrombolytic therapy and poor patency. Therapeutic approaches aimed at quenching PAI-1 activity after thrombolysis might be of interest to improve the efficacy of thrombolytic therapy for acute myocardial infarction.


1988 ◽  
Vol 59 (02) ◽  
pp. 299-303 ◽  
Author(s):  
Grazia Nicoloso ◽  
Jacques Hauert ◽  
Egbert K O Kruithof ◽  
Guy Van Melle ◽  
Fedor Bachmann

SummaryWe analyzed fibrinolytic parameters in 20 healthy men and 20 healthy women, aged from 25 to 59, before and after 10 and 20 min venous occlusion. The 10 min post-occlusion fibrinolytic activity measured directly in diluted unfractionated plasma by a highly sensitive 125I-fibrin plate assay correlated well with the activity of euglobulins determined by the classical fibrin plate assay (r = 0.729), but pre-stasis activities determined with these two methods did not correlate (r = 0.084). The enhancement of fibrinolytic activity after venous occlusion was mainly due to an increase of t-PA in the occluded vessels (4-fold increase t-PA antigen after 10 min and 8-fold after 20 min venous occlusion). Plasminogen activator inhibitor (PAI) activity and plasminogen activator inhibitor 1 (PAI-1)1 antigen levels at rest showed considerable dispersion ranging from 1.9 to 12.4 U/ml, respectively 6.9 to 77 ng/ml. A significant increase of PAI-1 antigen levels was observed after 10 and 20 min venous occlusion. At rest no correlation was found between PAI activity or PAI-1 antigen levels and the fibrinolytic activity measured by 125I-FPA. However, a high level of PAI-1 at rest was associated with a high prestasis antigen level of t-PA and a low fibrinolytic response after 10 min of venous stasis. Since the fibrinolytic response inversely correlated with PAI activity at rest, we conclude that its degree depends mainly on the presence of free PAI.


1992 ◽  
Vol 68 (05) ◽  
pp. 486-494 ◽  
Author(s):  
Malou Philips ◽  
Anne-Grethe Juul ◽  
Johan Selmer ◽  
Bent Lind ◽  
Sixtus Thorsen

SummaryA new assay for functional plasminogen activator inhibitor 1 (PAI-1) in plasma was developed. The assay is based on the quantitative conversion of PAI-1 to urokinase-type plasminogen activator (u-PA)-PAI-l complex the concentration of which is then determined by an ELISA employing monoclonal anti-PAI-1 as catching antibody and monoclonal anti-u-PA as detecting antibody. The assay exhibits high sensitivity, specificity, accuracy, and precision. The level of functional PAI-1, tissue-type plasminogen activator (t-PA) activity and t-PA-PAI-1 complex was measured in normal subjects and in patients with venous thromboembolism in a silent phase. Blood collection procedures and calibration of the respective assays were rigorously standardized. It was found that the patients had a decreased fibrinolytic capacity. This could be ascribed to high plasma levels of PAI-1. The release of t-PA during venous occlusion of an arm for 10 min expressed as the increase in t-PA + t-PA-PAI-1 complex exhibited great variation and no significant difference could be demonstrated between the patients with a thrombotic tendency and the normal subjects.


Sign in / Sign up

Export Citation Format

Share Document