scholarly journals Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation

2008 ◽  
Vol 295 (3) ◽  
pp. G591-G597 ◽  
Author(s):  
Kunrong Cheng ◽  
Roxana Samimi ◽  
Guofeng Xie ◽  
Jasleen Shant ◽  
Cinthia Drachenberg ◽  
...  

Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor antagonists, acetylcholinesterase inhibitors, and choline transport inhibitors on cell proliferation. A nonselective muscarinic receptor antagonist (atropine), a selective M3R antagonist ( p-fluorohexahydro-sila-difenidol hydrochloride), and a choline transport inhibitor (hemicholinum-3) all inhibited unstimulated H508 colon cancer cell proliferation by ∼40% ( P < 0.005). In contrast, two acetylcholinesterase inhibitors (eserine-hemisulfate and bis-9-amino-1,2,3,4-tetrahydroacridine) increased proliferation by 2.5- and 2-fold, respectively ( P < 0.005). By using quantitative real-time PCR, expression of choline acetyltransferase (ChAT), a critical enzyme for ACh synthesis, was identified in H508, WiDr, and Caco-2 colon cancer cells. By using high-performance liquid chromatography-electrochemical detection, released ACh was detected in H508 and Caco-2 cell culture media. Immunohistochemistry in surgical specimens revealed weak or no cytoplasmic staining for ChAT in normal colon enterocytes ( n = 25) whereas half of colon cancer specimens ( n = 24) exhibited moderate to strong staining ( P < 0.005). We conclude that ACh is an autocrine growth factor in colon cancer. Mechanisms that regulate colon epithelial cell production and release of ACh warrant further investigation.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Seong-Ho Lee ◽  
Jihye Lee ◽  
Thomas Herald ◽  
Sarah Cox ◽  
Leela Noronha ◽  
...  

Abstract Objectives Colon cancer is one of leading causes of cancer mortality worldwide. Sorghum is the fifth most largely cultivated crop for human diet in the world. Most sorghum varieties contain high content of phenolic compounds. The objective of the current study is to evaluate the anti-cancer properties of a novel high phenolic sorghum bran extract prepared under 70% ethanol with 5% citric acid solvent. Methods High phenolic sorghum, accession number PI570481, was grown in Puerto Vallarta, Mexico winter nursery during the 2018 and high phenolic sorghum bran extract was prepared using 70% ethanol with 5% citric acid solvent at room temperature for 2 hours. Human colon cancer cell lines (HCT15, SW480, HCT116 and HT-29) were treated with different doses of high phenolic sorghum bran extract. Cell proliferation and apoptosis was measured using MTS assay and Alexa Fluor 488 Annexin V/Dead Cell Apoptosis system, respectively. Distribution of cell cycle was measured Texas Red channel using BD LSRFortessa system. Cell migration and invasion was measured using wound healing assay and Matrigel, respectively. The luciferase activity of reporter genes was measured using a dual-luciferase assay and Western blot was performed to measure expression of cancer phenotype-associated proteins. Results Cell proliferation was inhibited and apoptosis was induced in the human colon cancer cells treated with high phenolic sorghum bran extract in a dose-dependent manner. High phenolic sorghum bran extract led to S phage arrest. Cell migration and invasion was also repressed in the human colon cancer cells treated with high phenolic sorghum bran extract. The change of cancer phenotypes was associated with up- or down-regulation of regulatory genes. Conclusions The present study expands our understanding on the potential use of high phenolic sorghum bran for prevention of human colon cancer. Funding Sources Cooperative Agreement grant from USDA-ARS to S-HL.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Nam-Hui Yim ◽  
Young Pil Jung ◽  
Aeyung Kim ◽  
Choong Je Ma ◽  
Won-Kyung Cho ◽  
...  

Oyaksungisan (OY) is a traditional herbal formula broadly used to treat beriberi, vomiting, diarrhea, and circulatory disturbance in Asian countries from ancient times. The effect of OY on cancer, however, was not reported until now. In this study, we have demonstrated that OY inhibits cell proliferation and induces cell deathviamodulating the autophagy on human colon cancer cells. In HCT116 cells, OY increased the ratio of LC3-II/LC3-I, a marker of autophagy, and treatment with 3-MA, an inhibitor of autophagy, and considerably reduced the formation of autophagosomes. In addition, OY regulated mitogen-activated protein kinase (MAPK) cascades; especially, JNK activation was closely related with autophagy effect by OY in HCT116 cells. Our results indicate that autophagy induction is responsible for the antiproliferative effect by OY, despite the weak apoptosis induction in HCT116 cells. In conclusion, OY might have a potential to be developed as an herbal anticancer remedy.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3798
Author(s):  
Nor Isnida Ismail ◽  
Iekhsan Othman ◽  
Faridah Abas ◽  
Nordin H. Lajis ◽  
Rakesh Naidu

The cytotoxic and apoptotic effects of turmeric (Curcuma longa) on colon cancer have been well documented but specific structural modifications of curcumin have been shown to possess greater growth-suppressive potential on colon cancer than curcumin. Therefore, the aim of this study is to identify the anti-cancer properties of curcumin analogue-MS13, a diarylpentanoid on the cytotoxicity, anti-proliferative and apoptotic activity of primary (SW480) and metastatic (SW620) human colon cancer cells. A cell viability assay showed that MS13 has greater cytotoxicity effect on SW480 (EC50: 7.5 ± 2.8 µM) and SW620 (EC50: 5.7 ± 2.4 µM) compared to curcumin (SW480, EC50: 30.6 ± 1.4 µM) and SW620, EC50: 26.8 ± 2.1 µM). Treatment with MS13 at two different doses 1X EC50 and 2X EC50 suppressed the colon cancer cells growth with lower cytotoxicity against normal cells. A greater anti-proliferative effect was also observed in MS13 treated colon cancer cells compared to curcumin at 48 and 72 h. Subsequent analysis on the induction of apoptosis showed that MS13 treated cells exhibited morphological features associated with apoptosis. The findings are also consistent with cellular apoptotic activities shown by increased caspase-3 activity and decreased Bcl-2 protein level in both colon cancer cell lines. In conclusion, MS13 able to suppress colon cancer cell growth by inhibiting cell proliferation and induce apoptosis in primary and metastatic human colon cancer cells.


Sign in / Sign up

Export Citation Format

Share Document