scholarly journals An imbalance of esophageal effector and regulatory T cell subsets in experimental eosinophilic esophagitis in mice

2009 ◽  
Vol 297 (3) ◽  
pp. G550-G558 ◽  
Author(s):  
Xiang Zhu ◽  
Meiqin Wang ◽  
Caleb H. Crump ◽  
Anil Mishra

We recently reported a critical role for T cells in the induction of eosinophilic esophagitis (EE) in mice; however, the role of specific T cell subsets in disease pathogenesis is not yet understood. In the current study, we tested the hypothesis that allergen-induced EE develops in response to the disproportion of functionally different effector and regulatory T cells in the esophagus. Fluorescence-activated cell sorter analysis was performed to examine activated T cell subsets using the cell surface activation markers CD25 and CD69. A significant increase in activated CD4+ and CD4− T cells was observed in the total esophageal cells isolated from the mouse model of EE. Furthermore, an imbalance in the effector and regulatory T cells was observed in the esophagus. The esophageal CD4+CD45RBhigh effector T cells in allergen-challenged mice increased compared with saline-challenged mice (65.4 ± 3.6 × 103 to 44.8 ± 4.2 × 103), whereas CD4+CD45RBlow mostly regulatory T cells decreased in allergen-challenged mice compared with saline-challenged mice (5.8 ± 0.9 × 103 from 10.2 ± 1.7 × 103). The functional characteristics were examined by analysis of the pro- and anti-inflammatory cytokine profile of purified low and high CD4+CD45RB subsets from the spleen. Additionally, a significantly reduced interleukin (IL)-2 production by CD4+CD45RBlow cells in allergen-challenged mice compared with saline-challenged mice was observed. The reduced IL-2 in the CD4+CD45RBlow subset may be associated with reduction of CD4+CD45RBlow subset. In conclusion, our results suggest that local regulatory interaction of CD45RBhigh and CD45RBlow CD4+ T cells may be required for protective and pathogenic immunity in EE.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Daria Vdovenko ◽  
Urs Eriksson

Myocarditis is an important cause of heart failure in young patients. Autoreactive, most often, infection-triggered CD4+ T cells were confirmed to be critical for myocarditis induction. Due to a defect in clonal deletion of heart-reactive CD4+ T cells in the thymus of mice and humans, significant numbers of heart-specific autoreactive CD4+ T cells circulate in the blood. Normally, regulatory T cells maintain peripheral tolerance and prevent spontaneous myocarditis development. In the presence of tissue damage and innate immune activation, however, activated self-antigen-loaded dendritic cells promote CD4+ effector T cell expansion and myocarditis. So far, a direct pathogenic role has been described for both activated Th17 and Th1 effector CD4+ T cell subsets, though Th1 effector T cell-derived interferon-gamma was shown to limit myocarditis severity and prevent transition to inflammatory dilated cardiomyopathy. Interestingly, recent observations point out that various CD4+ T cell subsets demonstrate high plasticity in maintaining immune homeostasis and modulating disease phenotypes in myocarditis. These subsets include Th1 and Th17 effector cells and regulatory T cells, despite the fact that there are still sparse and controversial data on the specific role of FOXP3-expressing Treg in myocarditis. Understanding the specific roles of these T cell populations at different stages of the disease progression might provide a key for the development of successful therapeutic strategies.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 260
Author(s):  
Myriam Ben Ben Khelil ◽  
Yann Godet ◽  
Syrine Abdeljaoued ◽  
Christophe Borg ◽  
Olivier Adotévi ◽  
...  

Over the past decades, CD4+ T cells have been considered as a supporting actor in the fields of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the critical role of CD4+ T cells during antitumor immunity. CD4+ T cells can either suppress or promote the antitumor cytotoxic CD8+ T cell responses, either in secondary lymphoid organs or in the tumor. In this review, we provide an overview of the multifaceted role of different CD4+ T cell subsets in cancer immune response and their contribution during cancer therapies. Specifically, we focus on the latest progress regarding the impact of CD4+ T cell modulation on immunotherapies and other cancer therapies and discuss the prospect for harnessing CD4+ T cells to control tumor progression and prevent recurrence in patients.


2020 ◽  
Author(s):  
Ye Ji Lee ◽  
Eun Hye Park ◽  
Jun Won Park ◽  
Kyeong Cheon Jung ◽  
Eun Bong Lee

Abstract Background: Stem cell-like memory T cells (Tscm) are a subset of memory T cells that have the characteristics of stem cells. The role of Tscm cells in rheumatoid arthritis (RA) is not well characterized. Methods: After measuring percentages of CD4+ and CD8+ Tscm cells within the peripheral blood and synovial mononuclear cell populations in RA and health controls (HCs), we confirmed the stem cell nature of Tscm cells from RA patients. The association of Tscm cells with disease activity was also analyzed. Next, the pathogenicity of Tscm cells was examined in RA patients by assessing T cell activation markers and cytokine secretion after stimulation with IL-6 and anti-CD3/CD28 beads. Finally, the transcriptomes of Tscm cells from RA patients were compared with those from HCs. Results: The percentages of CD4+ and CD8+ Tscm cells among total T cells were significantly higher in RA patients than in HCs. Upon stimulation, Tscm cells from RA patients differentiated into daughter T cell subsets with self-renewal capacity. The percentage of CD4+ Tscm cells correlated with expression of RA disease activity markers. Tscm cells from RA patients were more easily activated by IL-6 and anti-CD3/CD28 beads than those from HCs. Transcriptome analysis revealed that Tscm cells from RA patients showed patterns distinct from those of HCs. Conclusion: The percentage of transcriptionally distinct and potentially pathogenic Tscm cells are higher in RA patients than in HCs; these cells may be a continuous source of pathogenic T cells, which perpetuate RA.


2019 ◽  
Vol 116 (10) ◽  
pp. 4575-4582 ◽  
Author(s):  
Masanori Onda ◽  
Kazuto Kobayashi ◽  
Ira Pastan

The tumor microenvironment plays a critical role in controlling tumor progression and immune surveillance. We produced an immunotoxin (2E4-PE38) that kills mouse cells expressing CD25 by attaching the Fv portion of monoclonal antibody 2E4 (anti-mouse CD25) to a 38-kDa portion ofPseudomonasexotoxin A. We employed three mouse cancer tumor models (AB1 mesothelioma, 66c14 breast cancer, and CT26M colon cancer). Tumors were implanted at two sites on BALB/c mice. On days 5 and 9, one tumor was directly injected with 2E4-PE38, and the other was not treated; 2E4-PE38 produced complete regressions of 85% of injected AB1 tumors, 100% of 66c14 tumors, and 100% of CT26M tumors. It also produced complete regressions of 77% of uninjected AB1 tumors, 47% of 66c14 tumors, and 92% of CT26M tumors. Mice with complete regressions of 66c14 tumors were immune to rechallenge with 66c14 cells. Mice with complete regressions of AB1 or CT26M tumors developed cross-tumor immunity rejecting both tumor types. Injection of anti-CD25 antibody or a mutant inactive immunotoxin were generally ineffective. Tumors were analyzed 3 days after 2E4-PE38 injection. The number of regulatory T cells (Tregs) was significantly reduced in the injected tumor but not in the spleen. Injected tumors contained an increase in CD8 T cells expressing IFN-γ, the activation markers CD69 and CD25, and macrophages and conventional dendritic cells. Treatment with antibodies to CD8 abolished the antitumor effect. Selective depletion of Tregs in tumors facilitates the development of a CD8 T cell-dependent antitumor effect in three mouse models.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2148-2148
Author(s):  
Hidekazu Nishikii ◽  
Kim Byung-Su ◽  
Yan Chen ◽  
Jeanette Baker ◽  
Antonio Pierini ◽  
...  

Abstract Background : CD4+Foxp3+ regulatory T cells (Treg) are a subpopulation of T cells, which regulate the immune system and enhance immune tolerance after transplantation. Donor-derived Treg prevent the development of lethal acute graft versus host disease (GVHD) in murine models of allogeneic hematopoietic cell transplantation (HCT). We recently demonstrated that a single treatment of the agonistic antibody to DR3 (Death receptor 3, aDR3) to donor mice resulted in the expansion/activation of donor derived Treg and prevented acute GVHD (Blood 126:546, 2015), although the precise role of DR3 signaling in GVHD has not been elucidated. In this study, we investigated the efficacy of αDR3 treatment to recipient mice in model of murine GVHD. Methods To analyze the DR3 expression in immune cells with or without TCR stimulation, we comprehensively analyzed the cells with multicolor cytometry using viSNE (visualization of stochastic neighbor embedding algorithm). In transplantation experiments, 5x10e6 T cell depleted bone marrow (from WT C57BL/6 mice, H2kb) and 1x10e6 T cells (C57BL/6-Luciferase mice, H2kb) were injected intravenously into lethally irradiated (8Gy in total) BALB/c recipient mice (H2kd). aDR3 was intraperitonealy injected at different time point after transplantation. The transplanted mice were monitored by clinical GVHD score, weight, bioluminescence imaging (BLI) for donor T cell trafficking, and survival time. To investigate the role of donor or recipient derived Treg in this model, in vivo Treg depletion using B6-Foxp3DTR mice was also performed. Results viSNE analysis demonstrated that DR3 was preferentially expressed on resting-Treg (79%), although a subpopulation of CD4+Foxp3-T cells (59%), CD8+T cells (24%), and NK1.1+TCRb+NKT celsl (42%) also expressed DR3. However, DR3 expressions in CD4+Foxp3-T cells and CD8+T cells were elevated after TCR stimulation in vitro (p<0.01). These data suggested that activation of DR3 signaling would also affect the function of conventional T cell upon activation. In the mixed lymphocyte reaction using allogeneic T cells (from WT C57BL/6 mice) and irradiated splenocytes (from BALB/c mice), the activation of DR3 promoted allogeneic T cell proliferation (p<0.01). In transplantation experiments, aDR3 treatment (day 3 after transplant) to animals with ongoing GVHD failed to expand Treg and further promoted donor T cell activation/proliferation with worse outcomes (p<0.05 in BLI study, p<0.01 in survival). However, the prophylactic treatment of animals with aDR3 (day 0 αDR3 and day 2 allogeneic T cells) resulted in the expansion of recipient derived Treg (H2kd+CD4+Foxp3+ cells, p<0.01) and reduced the severity of GVHD with markedly prolonged survival (p<0.001). These data suggest that the function of DR3 signaling was highly dependent on the activation status of the T cells. This survival benefit could be observed even if Treg were depleted from the donor allogeneic T cells (from diphtheria toxin treated B6-Foxp3DTR mice), suggesting that host derived Treg, rather than donor cells, play a critical role in abrogating GVHD in this model. Conclusion In conclusion, we demonstrated that activation through DR3 signaling not only expands and activates Treg, but also further activates conventional alloreactive T cells and has very different clinical impact depending upon the timing of administration. These data provide important information for future clinical translation using modification of DR3 signaling. Disclosures Negrin: Stanford University: Patents & Royalties.


Author(s):  
Kristen Orumaa ◽  
Margaret R. Dunne

AbstractCOVID-19 is a respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first documented in late 2019, but within months, a worldwide pandemic was declared due to the easily transmissible nature of the virus. Research to date on the immune response to SARS-CoV-2 has focused largely on conventional B and T lymphocytes. This review examines the emerging role of unconventional T cell subsets, including γδ T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells in human SARS-CoV-2 infection.Some of these T cell subsets have been shown to play protective roles in anti-viral immunity by suppressing viral replication and opsonising virions of SARS-CoV. Here, we explore whether unconventional T cells play a protective role in SARS-CoV-2 infection as well. Unconventional T cells are already under investigation as cell-based immunotherapies for cancer. We discuss the potential use of these cells as therapeutic agents in the COVID-19 setting. Due to the rapidly evolving situation presented by COVID-19, there is an urgent need to understand the pathogenesis of this disease and the mechanisms underlying its immune response. Through this, we may be able to better help those with severe cases and lower the mortality rate by devising more effective vaccines and novel treatment strategies.


2009 ◽  
Vol 206 (2) ◽  
pp. 421-434 ◽  
Author(s):  
Randall H. Friedline ◽  
David S. Brown ◽  
Hai Nguyen ◽  
Hardy Kornfeld ◽  
JinHee Lee ◽  
...  

Cytotoxic T lymphocyte antigen-4 (CTLA-4) plays a critical role in negatively regulating T cell responses and has also been implicated in the development and function of natural FOXP3+ regulatory T cells. CTLA-4–deficient mice develop fatal, early onset lymphoproliferative disease. However, chimeric mice containing both CTLA-4–deficient and –sufficient bone marrow (BM)–derived cells do not develop disease, indicating that CTLA-4 can act in trans to maintain T cell self-tolerance. Using genetically mixed blastocyst and BM chimaeras as well as in vivo T cell transfer systems, we demonstrate that in vivo regulation of Ctla4−/− T cells in trans by CTLA-4–sufficient T cells is a reversible process that requires the persistent presence of FOXP3+ regulatory T cells with a diverse TCR repertoire. Based on gene expression studies, the regulatory T cells do not appear to act directly on T cells, suggesting they may instead modulate the stimulatory activities of antigen-presenting cells. These results demonstrate that CTLA-4 is absolutely required for FOXP3+ regulatory T cell function in vivo.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mark Engel ◽  
Tom Sidwell ◽  
Ajithkumar Vasanthakumar ◽  
George Grigoriadis ◽  
Ashish Banerjee

Regulatory T cells (Tregs) are a subset of CD4 T cells that are key mediators of immune tolerance. Most Tregs develop in the thymus. In this review we summarise recent findings on the role of diverse signalling pathways and downstream transcription factors in thymic Treg development.


2021 ◽  
Vol 118 (23) ◽  
pp. e2103730118
Author(s):  
Yuka Nakajima ◽  
Kenji Chamoto ◽  
Takuma Oura ◽  
Tasuku Honjo

CD8+ T cells play a central role in antitumor immune responses that kill cancer cells directly. In aged individuals, CD8+ T cell immunity is strongly suppressed, which is associated with cancer and other age-related diseases. The mechanism underlying this age-related decrease in immune function remains largely unknown. This study investigated the role of T cell function in age-related unresponsiveness to PD-1 blockade cancer therapy. We found inefficient generation of CD44lowCD62Llow CD8+ T cell subset (P4) in draining lymph nodes of tumor-bearing aged mice. In vitro stimulation of naive CD8+ T cells first generated P4 cells, followed by effector/memory T cells. The P4 cells contained a unique set of genes related to enzymes involved in one-carbon (1C) metabolism, which is critical to antigen-specific T cell activation and mitochondrial function. Consistent with this finding, 1C-metabolism–related gene expression and mitochondrial respiration were down-regulated in aged CD8+ T cells compared with young CD8+ T cells. In aged OVA-specific T cell receptor (TCR) transgenic mice, ZAP-70 was not activated, even after inoculation with OVA-expressing tumor cells. The attenuation of TCR signaling appeared to be due to elevated expression of CD45RB phosphatase in aged CD8+ T cells. Surprisingly, strong stimulation by nonself cell injection into aged PD-1–deficient mice restored normal levels of CD45RB and ameliorated the emergence of P4 cells and 1C metabolic enzyme expression in CD8+ T cells, and antitumor activity. These findings indicate that impaired induction of the P4 subset may be responsible for the age-related resistance to PD-1 blockade, which can be rescued by strong TCR stimulation.


Sign in / Sign up

Export Citation Format

Share Document