Metabolic development in the liver and the implications of the n-3 fatty acid supply

2012 ◽  
Vol 302 (2) ◽  
pp. G250-G259 ◽  
Author(s):  
Elizabeth M. Novak ◽  
Bernd O. Keller ◽  
Sheila M. Innis

The n-3 fatty acids contribute to regulation of hepatic fatty acid oxidation and synthesis in adults and accumulate in fetal and infant liver in variable amounts depending on the maternal diet fat composition. Using 2D gel proteomics and matrix-assisted laser desorption/ionization time of flight mass spectrometry, we recently identified altered abundance of proteins associated with glucose and amino acid metabolism in neonatal rat liver with increased n-3 fatty acids. Here, we extend studies on n-3 fatty acids in hepatic metabolic development to targeted gene and metabolite analyses and map the results into metabolic pathways to consider the role of n-3 fatty acids in glucose, fatty acid, and amino metabolism. Feeding rats 1.5% compared with <0.1% energy 18:3n-3 during gestation led to higher 20:5n-3 and 22:6n-3 in 3-day-old offspring liver, higher serine hydroxymethyltransferase, carnitine palmitoyl transferase, and acyl CoA oxidase and lower pyruvate kinase and stearoyl CoA desaturase gene expression, with higher cholesterol, NADPH and glutathione, and lower glycine ( P < 0.05). Integration of the results suggests that the n-3 fatty acids may be important in facilitating hepatic metabolic adaptation from in utero nutrition to the postnatal high-fat milk diet, by increasing fatty acid oxidation and directing glucose and amino acids to anabolic pathways.

1993 ◽  
Vol 264 (6) ◽  
pp. R1065-R1070 ◽  
Author(s):  
D. M. Surina ◽  
W. Langhans ◽  
R. Pauli ◽  
C. Wenk

The influence of macronutrient content of a meal on postprandial fatty acid oxidation was investigated in 13 Caucasian males after consumption of a high-fat (HF) breakfast (33% carbohydrate, 52% fat, 15% protein) and after an equicaloric high-carbohydrate (HC) breakfast (78% carbohydrate, 6% fat, 15% protein). The HF breakfast contained short- and medium-chain fatty acids, as well as long-chain fatty acids. Respiratory quotient (RQ) and plasma beta-hydroxybutyrate (BHB) were measured during the 3 h after the meal as indicators of whole body substrate oxidation and hepatic fatty acid oxidation, respectively. Plasma levels of free fatty acids (FFA), triglycerides, glucose, insulin, and lactate were also determined because of their relationship to nutrient utilization. RQ was significantly lower and plasma BHB was higher after the HF breakfast than after the HC breakfast, implying that more fat is burned in general and specifically in the liver after an HF meal. As expected, plasma FFA and triglycerides were higher after the HF meal, and insulin and lactate were higher after the HC meal. In sum, oxidation of ingested fat occurred in response to a single HF meal.


1993 ◽  
Vol 70 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Allan J. Lepine ◽  
Malcolm Watford ◽  
R. Dean BOYD ◽  
Deborah A. Ross ◽  
Dana M. Whitehead

Hepatocytes were isolated from sixteen fasting neonatal pigs and used in two experiments: (1) to determine the effect of various factors on the ability for hepatic oxidation of fatty acids and (2) to clarify the relationship between fatty acid oxidation and glucose synthesis. In Expt 1, newborn pigs were either fasted from birth for 24 h or allowed to suck ad lib. for 3 d followed by a 24 h fast. In the presence of pyruvate, oxidation of octanoate (2 mM) was about 30-fold greater than oleate (1 mM) regardless of age, but glucose synthesis was not enhanced beyond that observed for pyruvate alone. Inclusion of carnitine (1 mM), glucagon (100 nM) or dibutryl cAMP (50 μM) in the incubation media did not stimulate either fatty acid oxidation (octanoate or oleate) or glucose synthesis. Extending the period of fasting to 48 h (Expt 2) failed to enhance the fatty acid oxidative capacity or glucose synthesis rate. Likewise, the redox potential of the giuconeogenic substrate (lactate v. pyruvate) did not influence glucose synthesis regardless of the oxidative capacity exhibited for fatty acids. These data indicate that fatty acid oxidative capacity is not the first limiting factor to full expression of gluconeogenesis in hepatocytes isolated from fasted newborn pigs.


1979 ◽  
Vol 182 (2) ◽  
pp. 593-598 ◽  
Author(s):  
P Ferré ◽  
J P Pégorier ◽  
D H Williamson ◽  
J Girard

Metabolic interactions between fatty acid oxidation and gluconeogenesis were investigated in vivo in 16h-old newborn rats under various nutritional states. As the newborn rat has no white adipose tissue, starvation from birth induces a low rate of hepatic fatty acid oxidation. Hepatic gluconeogenesis in inhibited in the starved newborn rat when compared with the suckling rat, which receives fatty acids through the milk, at the steps catalysed by pyruvate carboxylase and glyceraldehyde 3-phosphate dehydrogenase. These inhibitions are rapidly reversed by triacylglycerol feeding. Inhibition of fatty acid oxidation by pent-4-enoate in the suckling animal mimics the effect of starvation on the pattern of hepatic gluconeogenic metabolites. It is concluded that, in the newborn rat in vivo, hepatic fatty acids oxidation can increase the gluconeogenic flux by providing the acetyl-CoA necessary for the reaction catalysed by pyruvate carboxylase and the reducing equivalents (NADH) to displace the reversible reaction catalysed by glyceraldehyde 3-phosphate dehydrogenase in the direction of gluconeogenesis.


2021 ◽  
pp. 101275
Author(s):  
Marina Serrano-Maciá ◽  
Jorge Simón ◽  
Maria J. González-Rellan ◽  
Mikel Azkargorta ◽  
Naroa Goikoetxea-Usandizaga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document