scholarly journals Heme oxygenase-1 deficiency promotes the development of necrotizing enterocolitis-like intestinal injury in a newborn mouse model

2013 ◽  
Vol 304 (11) ◽  
pp. G991-G1001 ◽  
Author(s):  
Stephanie Schulz ◽  
Ronald J. Wong ◽  
Kyu Yun Jang ◽  
Flora Kalish ◽  
Karen M. Chisholm ◽  
...  

Necrotizing enterocolitis (NEC) is typified by mucosal destruction, which subsequently can lead to intestinal necrosis. Prematurity, enteral feeding, and bacterial colonization are the main risk factors and, combined with other stressors, can cause increased intestinal permeability, injury, and an exaggerated inflammatory response. Heme oxygenase-1 (HO-1) mediates intestinal protection due to anti-inflammatory, antioxidative, and antiapoptotic effects of its products carbon monoxide, biliverdin, and bilirubin. This study investigates a possible role of HO-1 in the pathogenesis of NEC using a newborn mouse model. We induced NEC-like intestinal injury in 7-day-old HO-1 heterozygous (HO-1 Het, Hmox1+/-) and wild-type (Wt, Hmox1+/+) mice by gavage feeding and hypoxic exposures. Control (Con) pups of both genotypes were dam-fed. Intestines of HO-1 Het Con pups appeared predisposed to injury, with higher histological damage scores, more TUNEL-positive cells, and a significant reduction in muscularis externa thickness compared with Wt Con pups. The increase in HO activity after HO-1 induction by the substrate heme or by hypoxic stress was significantly impaired in HO-1 Het pups. After induction of intestinal injury, HO-1 Het pups displayed significantly higher NEC incidence (78 vs. 43%), mortality (83 vs. 54%), and median scores (2.5 vs. 1.5) than Wt NEC pups. PCR array analyses revealed increased expressions of IL-1β, P-selectin, matrix metallopeptidase 2, collagen type XVIII-α1, serpine 1, and others in NEC-induced HO-1 Het ileal and jejunal tissues. We conclude that a partial HO-1 deficiency promotes experimental NEC-like intestinal injury, possibly mediated by exaggerated inflammation and disruption in tissue repair.

2021 ◽  
Vol 23 (1) ◽  
pp. 470
Author(s):  
Olga Mucha ◽  
Katarzyna Kaziród ◽  
Paulina Podkalicka ◽  
Kinga Rusin ◽  
Józef Dulak ◽  
...  

Dysregulation of autophagy may contribute to the progression of various muscle diseases, including Duchenne muscular dystrophy (DMD). Heme oxygenase-1 (HO-1, encoded by Hmox1), a heme-degrading enzyme, may alleviate symptoms of DMD, inter alia, through anti-inflammatory properties. In the present study, we determined the role of HO-1 in the regulation of autophagy and mitophagy in mdx animals, a commonly used mouse model of the disease. In the gastrocnemius of 6-week-old DMD mice, the mRNA level of mitophagy markers: Bnip3 and Pink1, as well as autophagy regulators, e.g., Becn1, Map1lc3b, Sqstm1, and Atg7, was decreased. In the dystrophic diaphragm, changes in the latter were less prominent. In older, 12-week-old dystrophic mice, diminished expressions of Pink1 and Sqstm1 with upregulation of Atg5, Atg7, and Lamp1 was depicted. Interestingly, we demonstrated higher protein levels of autophagy regulator, LC3, in dystrophic muscles. Although the lack of Hmox1 in mdx mice influenced blood cell count and the abundance of profibrotic proteins, no striking differences in mRNA and protein levels of autophagy and mitophagy markers were found. In conclusion, we demonstrated complex, tissue, and age-dependent dysregulation of mitophagic and autophagic markers in DMD mice, which are not affected by the additional lack of Hmox1.


2011 ◽  
Vol 49 (01) ◽  
Author(s):  
R Barikbin ◽  
D Schwinge ◽  
C Schramm ◽  
G Tiegs ◽  
G Sass

2018 ◽  
Vol 24 (20) ◽  
pp. 2283-2302 ◽  
Author(s):  
Vivian B. Neis ◽  
Priscila B. Rosa ◽  
Morgana Moretti ◽  
Ana Lucia S. Rodrigues

Heme oxygenase (HO) family catalyzes the conversion of heme into free iron, carbon monoxide and biliverdin. It possesses two well-characterized isoforms: HO-1 and HO-2. Under brain physiological conditions, the expression of HO-2 is constitutive, abundant and ubiquitous, whereas HO-1 mRNA and protein are restricted to small populations of neurons and neuroglia. HO-1 is an inducible enzyme that has been shown to participate as an essential defensive mechanism for neurons exposed to oxidant challenges, being related to antioxidant defenses in certain neuropathological conditions. Considering that neurodegenerative diseases (Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and Multiple Sclerosis (MS)) and neuropsychiatric disorders (depression, anxiety, Bipolar Disorder (BD) and schizophrenia) are associated with increased inflammatory markers, impaired redox homeostasis and oxidative stress, conditions that may be associated with alterations in HO-levels/activity, the purpose of this review is to present evidence on the possible role of HO-1 in these Central Nervous System (CNS) diseases. In addition, the possible therapeutic potential of targeting brain HO-1 is explored in this review.


2017 ◽  
Vol 18 (6) ◽  
pp. 674-686 ◽  
Author(s):  
Aleksandra Piechota-Polanczyk ◽  
Alicja Jozkowicz

2004 ◽  
Vol 85 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Isabel Devesa ◽  
Maria Luisa Ferrándiz ◽  
Isabel Guillén ◽  
José Miguel Cerdá ◽  
Maria José Alcaraz

2010 ◽  
Vol 62 (1) ◽  
pp. 170-177 ◽  
Author(s):  
Zhi-Jun Ge ◽  
Guo-Jun Jiang ◽  
Yan-Ping Zhao ◽  
Guo-Xiang Wang ◽  
Yong-Fei Tan

Sign in / Sign up

Export Citation Format

Share Document