scholarly journals The role of heme oxygenase-1 (HO-1) in the regulation of inflammatory reaction, neuronal cell proliferation and apoptosis in rats after intracerebral hemorrhage (ICH)

2016 ◽  
Vol Volume 13 ◽  
pp. 77-85 ◽  
Author(s):  
Xuezheng Fan ◽  
Linshen Mu
Redox Biology ◽  
2020 ◽  
Vol 32 ◽  
pp. 101527 ◽  
Author(s):  
Ghazaleh Behnammanesh ◽  
Giovanna L. Durante ◽  
Yash P. Khanna ◽  
Kelly J. Peyton ◽  
William Durante

2018 ◽  
Vol 19 (8) ◽  
pp. 2260 ◽  
Author(s):  
Mariapaola Nitti ◽  
Sabrina Piras ◽  
Lorenzo Brondolo ◽  
Umberto Marinari ◽  
Maria Pronzato ◽  
...  

Heme oxygenase 1 (HO-1) up-regulation is recognized as a pivotal mechanism of cell adaptation to stress. Under control of different transcription factors but with a prominent role played by Nrf2, HO-1 induction is crucial also in nervous system response to damage. However, several lines of evidence have highlighted that HO-1 expression is associated to neuronal damage and neurodegeneration especially in Alzheimer’s and Parkinson’s diseases. In this review, we summarize the current literature regarding the role of HO-1 in nervous system pointing out different molecular mechanisms possibly responsible for HO-1 up-regulation in nervous system homeostasis and neurodegeneration.


2016 ◽  
Vol 37 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Zhen Zhang ◽  
Yuejia Song ◽  
Ze Zhang ◽  
Danyang Li ◽  
Hong Zhu ◽  
...  

Intracerebral hemorrhage (ICH) is a devastating form of stroke with high morbidity and mortality. Heme oxygenase-1 (HO-1), the key enzyme in heme degradation, is highly expressed after ICH, but its role is still unclear. In this study, we used an HO-1 inducer and inhibitor to test the role of HO-1 in different stages of ICH in vivo and in vitro. In the early stage of ICH, high HO-1 expression worsened the outcomes of mice subjected to the collagenase-induced ICH model. HO-1 increased brain edema, white matter damage, neuronal death, and neurobehavioral deficits. Furthermore, elevated HO-1 increased inflammation, oxidative stress, matrix metalloproteinase-9/2 activity, and iron deposition. In the later stage of ICH, long-term induction of HO-1 increased hematoma absorption, angiogenesis, and recovery of neurologic function. We conclude that HO-1 activation mediates early brain damage after ICH but promotes neurologic function recovery in the later stage of ICH.


2018 ◽  
Vol 24 (20) ◽  
pp. 2283-2302 ◽  
Author(s):  
Vivian B. Neis ◽  
Priscila B. Rosa ◽  
Morgana Moretti ◽  
Ana Lucia S. Rodrigues

Heme oxygenase (HO) family catalyzes the conversion of heme into free iron, carbon monoxide and biliverdin. It possesses two well-characterized isoforms: HO-1 and HO-2. Under brain physiological conditions, the expression of HO-2 is constitutive, abundant and ubiquitous, whereas HO-1 mRNA and protein are restricted to small populations of neurons and neuroglia. HO-1 is an inducible enzyme that has been shown to participate as an essential defensive mechanism for neurons exposed to oxidant challenges, being related to antioxidant defenses in certain neuropathological conditions. Considering that neurodegenerative diseases (Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and Multiple Sclerosis (MS)) and neuropsychiatric disorders (depression, anxiety, Bipolar Disorder (BD) and schizophrenia) are associated with increased inflammatory markers, impaired redox homeostasis and oxidative stress, conditions that may be associated with alterations in HO-levels/activity, the purpose of this review is to present evidence on the possible role of HO-1 in these Central Nervous System (CNS) diseases. In addition, the possible therapeutic potential of targeting brain HO-1 is explored in this review.


2017 ◽  
Vol 18 (6) ◽  
pp. 674-686 ◽  
Author(s):  
Aleksandra Piechota-Polanczyk ◽  
Alicja Jozkowicz

2004 ◽  
Vol 85 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Isabel Devesa ◽  
Maria Luisa Ferrándiz ◽  
Isabel Guillén ◽  
José Miguel Cerdá ◽  
Maria José Alcaraz

Sign in / Sign up

Export Citation Format

Share Document