scholarly journals Histone H3K4 trimethylation by MLL3 as part of ASCOM complex is critical for NR activation of bile acid transporter genes and is downregulated in cholestasis

2011 ◽  
Vol 300 (5) ◽  
pp. G771-G781 ◽  
Author(s):  
M. Ananthanarayanan ◽  
Yanfeng Li ◽  
S. Surapureddi ◽  
N. Balasubramaniyan ◽  
Jaeyong Ahn ◽  
...  

The nuclear receptor Farnesoid x receptor (FXR) is a critical regulator of multiple genes involved in bile acid homeostasis. The coactivators attracted to promoters of FXR target genes and epigenetic modifications that occur after ligand binding to FXR have not been completely defined, and it is unknown whether these processes are disrupted during cholestasis. Using a microarray, we identified decreased expression of mixed lineage leukemia 3 (MLL3), a histone H3 lysine 4 (H3K4) lysine methyl transferase at 1 and 3 days of post-common bile duct ligation (CBDL) in mice. Chromatin immunoprecipitation analysis (ChIP) analysis revealed that H3K4me3 of transporter promoters by MLL3 as part of activating signal cointegrator-2 -containing complex (ASCOM) is essential for activation of bile salt export pump (BSEP), multidrug resistance associated protein 2 (MRP2), and sodium taurocholate cotransporting polypeptide (NTCP) genes by FXR and glucocorticoid receptor (GR). Knockdown of nuclear receptor coactivator 6 (NCOA6) or MLL3/MLL4 mRNAs by small interfering RNA treatment led to a decrease in BSEP and NTCP mRNA levels in hepatoma cells. Human BSEP promoter transactivation by FXR/RXR was enhanced in a dose-dependent fashion by NCOA6 cDNA coexpression and decreased by AdsiNCOA6 infection in HepG2 cells. GST-pull down assays showed that domain 3 and 5 of NCOA6 (LXXLL motifs) interacted with FXR and that the interaction with domain 5 was enhanced by chenodeoxycholic acid. In vivo ChIP assays in HepG2 cells revealed ligand-dependent recruitment of ASCOM complex to FXR element in BSEP and GR element in NTCP promoters, respectively. ChIP analysis demonstrated significantly diminished recruitment of ASCOM complex components and H3K4me3 to Bsep and Mrp2 promoter FXR elements in mouse livers after CBDL. Taken together, these data show that the “H3K4me3” epigenetic mark is essential to activation of BSEP, NTCP, and MRP2 genes by nuclear receptors and is downregulated in cholestasis.

2009 ◽  
Vol 296 (5) ◽  
pp. G1119-G1129 ◽  
Author(s):  
Pilar Martínez-Fernández ◽  
Loreto Hierro ◽  
Paloma Jara ◽  
Luis Alvarez

Farnesoid X receptor (FXR) is a bile acid-sensing nuclear receptor that controls bile acid homeostasis. It has been suggested that downregulation of FXR contributes to the pathogenesis of an inherited disorder of bile secretion caused by mutations in ATP8B1. We have investigated the relationship between ATP8B1 knockdown and FXR downregulation in the human hepatoblastoma cell line HepG2. Transfection of HepG2 cells with ATP8B1 small interfering RNA (siRNA) duplexes led to a 60% reduction in the endogenous levels of ATP8B1 mRNA and protein and a concomitant decrease in FXR mRNA and protein content, as well as in FXR phosphorylation. This decrease was accompanied by a marked reduction in mRNA levels of a subset of FXR targets, such as bile salt export pump ( ABCB11), small heterodimer partner, and uridine 5′-diphosphate-glucuronosyltransferase. ATP8B1 inhibition specifically targeted FXR since mRNA expression of other prominent nuclear receptors, such as pregnane X receptor and constitutive androstane receptor, or liver-enriched transcription factors, such as hepatocyte nuclear factor 1α ( HNF-1α) and HNF-4α, was not altered. The expression of other key genes involved in bile acid synthesis, detoxification, and transport also remained unchanged upon ATP8B1 knockdown. Supporting the specificity of the effect, siRNA-mediated silencing of ABCB11, whose defect is associated with another inherited disorder of bile secretion, did not affect FXR expression. Treatment with the synthetic FXR agonist GW4064 was able to partially neutralize ATP8B1 siRNA-mediated FXR downregulation and fully counteract inhibition of FXR target genes. Collectively these findings indicate that ATP8B1 knockdown specifically downregulates FXR, and this action can be circumvented by treatment with FXR agonists.


2005 ◽  
Vol 289 (5) ◽  
pp. G798-G805 ◽  
Author(s):  
Gernot Zollner ◽  
Martin Wagner ◽  
Peter Fickert ◽  
Andreas Geier ◽  
Andrea Fuchsbichler ◽  
...  

Expression of the main hepatic bile acid uptake system, the Na+-taurocholate cotransporter (Ntcp), is downregulated during cholestasis. Bile acid-induced, farnesoid X receptor (FXR)-mediated induction of the nuclear repressor short heterodimer partner (SHP) has been proposed as a key mechanism reducing Ntcp expression. However, the role of FXR and SHP or other nuclear receptors and hepatocyte-enriched transcription factors in mediating Ntcp repression in obstructive cholestasis is unclear. FXR knockout (FXR−/−) and wild-type (FXR+/+) mice were subjected to common bile duct ligation (CBDL). Cholic acid (CA)-fed and LPS-treated FXR−/− and FXR+/+ mice were studied for comparison. mRNA levels of Ntcp and SHP and nuclear protein levels of hepatocyte nuclear factor (HNF)-1α, HNF-3β, HNF-4α, retinoid X receptor (RXR)-α, and retinoic acid receptor (RAR)-α and their DNA binding were assessed. Hepatic cytokine mRNA levels were also measured. CBDL and CA led to Ntcp repression in FXR+/+, but not FXR−/−, mice, whereas LPS reduced Ntcp expression in both genotypes. CBDL and LPS but not CA induced cytokine expression and reduced levels of HNF-1α, HNF-3β, HNF-4α, RXRα, and RARα to similar extents in FXR+/+ and FXR−/−. DNA binding of these transactivators was unaffected by CA in FXR+/+ mice but was markedly reduced in FXR−/− mice. In conclusion, Ntcp repression by CBDL and CA is mediated by accumulating bile acids via FXR and does not depend on cytokines, whereas Ntcp repression by LPS is independent of FXR. Reduced levels of HNF-1α, RXRα, and RARα in CBDL FXR−/− mice and reduced DNA binding in CA-fed FXR−/− mice, despite unchanged Ntcp levels, indicate that these factors may have a minor role in regulation of mouse Ntcp during cholestasis.


2004 ◽  
Vol 286 (5) ◽  
pp. G730-G735 ◽  
Author(s):  
Guorong Xu ◽  
Lu-xing Pan ◽  
Hai Li ◽  
Quan Shang ◽  
Akira Honda ◽  
...  

Cholesterol feeding upregulates CYP7A1 in rats but downregulates CYP7A1 in rabbits. To clarify the mechanism responsible for the upregulation of CYP7A1 in cholesterol-fed rats, the effects of dietary cholesterol (Ch) and cholic acid (CA) on the activation of the nuclear receptors, liver X-receptor (LXR-α) and farsenoid X-receptor (FXR), which positively and negatively regulate CYP7A1, were investigated in rats. Studies were carried out in four groups ( n = 12/group) of male Sprague-Dawley rats fed regular chow (control), 2% Ch, 2% Ch + 1% CA, and 1% CA alone for 1 wk. Changes in mRNA expression of short heterodimer partner (SHP) and bile salt export pump (BSEP), target genes for FXR, were determined to indicate FXR activation, whereas the expression of ABCA1 and lipoprotein lipase (LPL), target genes for LXR-α, reflected activation. CYP7A1 mRNA and activity increased twofold and 70%, respectively, in rats fed Ch alone when the bile acid pool size was stable but decreased 43 and 49%, respectively, after CA was added to the Ch diet, which expanded the bile acid pool 3.4-fold. SHP and BSEP mRNA levels did not change after feeding Ch but increased 88 and 37% in rats fed Ch + CA. This indicated that FXR was activated by the expanded bile acid pool. When Ch or Ch + CA were fed, hepatic concentrations of oxysterols, ligands for LXR-α increased to activate LXR-α, as evidenced by increased mRNA levels of ABCA1 and LPL. Feeding CA alone enlarged the bile acid pool threefold and increased the expression of both SHP and BSEP. These results suggest that LXR-α was activated in rats fed both Ch or Ch + CA, whereas CYP7A1 mRNA and activity were induced only in Ch-fed rats where the bile acid pool was not enlarged such that FXR was not activated. In rats fed Ch + CA, the bile acid pool expanded, which activated FXR to offset the stimulatory effects of LXR-α on CYP7A1.


2016 ◽  
Vol 310 (11) ◽  
pp. G1044-G1051 ◽  
Author(s):  
Regina Krattinger ◽  
Adrian Boström ◽  
Helgi B. Schiöth ◽  
Wolfgang E. Thasler ◽  
Jessica Mwinyi ◽  
...  

Farnesoid X receptor (FXR, NR1H4) plays an important role in the regulation of bile acid homeostasis in liver and intestine and may exert protective effects against certain forms of cancer such as colon carcinoma. However, the role of FXR in cell growth regulation, apoptosis, and carcinogenesis is still controversial. Similar to FXR, microRNA-192 (miR-192) is mainly expressed in the liver and colon and plays an important role in the pathogenesis of colon carcinoma. In this study, we investigated the extent to which FXR is regulated by miR-192. Two in silico-predicted binding sites for miR-192-3p within the NR1H4-3′ untranslated region (UTR) were examined in vitro by luciferase reporter assays. Wild-type and mutated forms of the NR1H4-3′UTR were subcloned into a pmirGLO vector and cotransfected into Huh-7 cells with miR-192-3p. To study the effects of miR-192 on the expression of FXR, FXR target genes and cell proliferation, Huh-7 and Caco-2 cells were transfected with miR-192-5p and -3p mimics or antagomirs. In addition, the correlation between FXR and miR-192 expression was studied by linear regression analyses in colonic adenocarcinoma tissue from 27 patients. MiR-192-3p bound specifically to the NR1H4-3′UTR and significantly decreased luciferase activity. Transfection with miR-192 led to significant decreases in NR1H4 mRNA and protein levels as well as the mRNA levels of the FXR-inducible bile acid transporters OSTα-OSTβ and OATP1B3. Significant inverse correlations were detected in colonic adenocarcinoma between NR1H4 mRNA and miR-192-3p expression. In summary, microRNA-192 suppresses the expression of FXR and FXR target genes in vitro and in vivo.


2008 ◽  
Vol 22 (6) ◽  
pp. 1345-1356 ◽  
Author(s):  
Youn-Kyoung Lee ◽  
Daniel R. Schmidt ◽  
Carolyn L. Cummins ◽  
Mihwa Choi ◽  
Li Peng ◽  
...  

Abstract Liver receptor homolog 1 (LRH-1), an orphan nuclear receptor, is highly expressed in liver and intestine, where it is implicated in the regulation of cholesterol, bile acid, and steroid hormone homeostasis. Among the proposed LRH-1 target genes in liver are those encoding cholesterol 7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8B1), which catalyze key steps in bile acid synthesis. In vitro studies suggest that LRH-1 may be involved both in stimulating basal CYP7A1 and CYP8B1 transcription and in repressing their expression as part of the nuclear bile acid receptor [farnesoid X receptor (FXR)]-small heterodimer partner signaling cascade, which culminates in small heterodimer partner binding to LRH-1 to repress gene transcription. However, in vivo analysis of LRH-1 actions has been hampered by the embryonic lethality of Lrh-1 knockout mice. To overcome this obstacle, mice were generated in which Lrh-1 was selectively disrupted in either hepatocytes or intestinal epithelium. LRH-1 deficiency in either tissue changed mRNA levels of genes involved in cholesterol and bile acid homeostasis. Surprisingly, LRH-1 deficiency in hepatocytes had no significant effect on basal Cyp7a1 expression or its repression by FXR. Whereas Cyp8b1 repression by FXR was also intact in mice deficient for LRH-1 in hepatocytes, basal CYP8B1 mRNA levels were significantly decreased, and there were corresponding changes in the composition of the bile acid pool. Taken together, these data reveal a broad role for LRH-1 in regulating bile acid homeostasis but demonstrate that LRH-1 is either not involved in the feedback regulation of bile acid synthesis or is compensated for by other factors.


2016 ◽  
Vol 310 (8) ◽  
pp. G618-G628 ◽  
Author(s):  
Natarajan Balasubramaniyan ◽  
Meenakshisundaram Ananthanarayanan ◽  
Frederick J. Suchy

In this study we identified the mechanisms underlying the inhibitory effects of NF-κB on the expression of genes encoding multiple liver transport proteins. Well-conserved NF-κB binding sites were found in the promoters of farnesoid X receptor (FXR)-target genes. An electromobility shift assay (EMSA) demonstrated the specific interaction between the NF-κB p65 protein and a 32P-labeled BSEP NF-κB response element (NF-κBE). Chromatin immunoprecipitation (ChIP) analysis confirmed binding of NF-κB p65 to the BSEP locus but not the FXRE in vitro. NF-κB p65 overexpression in Huh-7 cells markedly repressed FXR/RXR transactivation of the BSEP, ABCG5/G8, MRP2, and FXR promoters, which was totally reversed by expression of the IκBα super-repressor. NF-κB interacted directly with FXR on coimmunoprecipitation, suggesting another level for the inhibitory effects of NF-κB on FXR-target genes. In vivo ChIP analysis with liver nuclei obtained from mice after 3 days of common bile duct ligation (BDL) or 6 h post-lipopolysaccharide (LPS) injection showed a markedly increased recruitment of NF-κB p65 to the Bsep promoter compared with controls. There was also increased recruitment of the corepressor silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and histone deacetylase (HDAC)3 and HDAC2 to the NF-κB sites. We also found that NF-κB p65 was recruited to NF-κB binding sites in the promoters of organic solute transporter, OSTα and OSTβ, and unexpectedly activated rather than repressed gene expression. In mouse liver after BDL NF-κB recruitment to Ostα and Ostβ promoters was associated with increased binding of the potent coactivator cAMP response element binding protein (CREB)-binding protein (CBP)/p300 to the NF-κBE and depletion of CBP/p300 at the FXR element. Overall, these studies demonstrate a novel role for NF-κB in adaptation to obstructive and LPS-induced cholestasis acting through recruitment to specific NF-κB binding sites in the promoters of FXR-target genes and possibly through direct interaction with FXR.


2021 ◽  
Vol 21 ◽  
Author(s):  
Reem Mebed ◽  
Yasser BM Ali ◽  
Nahla Shehata ◽  
Nadia El-Guendy ◽  
Nahla Gamal ◽  
...  

Background: Bevacizumab (Bev) resistance is hypothesized to be overcome by combination with inhibitors of other signalling pathways. Objective: We aimed to study the effect of combining Bev with knocked down β-catenin (Bev-β-cat-siRNA) on the expression of VEGF-A, Slug, NFКB and its two target genes c-Flip and FasR in HepG2. Expression of VEGF-A and Slug was also studied in Caco-2 cells. Methods: Cultured cells were divided into six groups 1) cells treated with Bev only 2) cells treated with β-catenin-siRNA 3) cells treated with Bev-β-cat-siRNA 4) cells treated with negative control 5) cells treated with Bev-negative control and untreated cells. Expressions were assessed using qPCR and western blotting. Results: Bev-β-cat-siRNA significantly reduced the mRNA level of VEGF-A, which was initially increased in response to Bev alone in HepG2 but not in Caco-2. Additionally, Bev-β-cat-siRNA significantly decreased Slug mRNA level compared to Bev only treated HepG2 cells. In contrast, VEGF-A and Slug mRNA levels in Bev only group were remarkably lower than Bev-β-cat-siRNA in Caco-2 cells. Distinct β-catenin and Slug protein expressions were noticed in HepG2 and Caco-2 cells. On the other hand, Bev-β-cat-siRNA remarkably reduced the level of NFКB, FasR and c-Flip compared to Bev only treated HepG2 cells although the difference was not statistically significant. Conclusion: We conclude that, combining Bevacizumab with knocked down β-catenin reduce the expression of VEGF-A and Slug in HepG2 but not in Caco-2 cells.


2006 ◽  
Vol 290 (3) ◽  
pp. G476-G485 ◽  
Author(s):  
Jean-François Landrier ◽  
Jyrki J. Eloranta ◽  
Stephan R. Vavricka ◽  
Gerd A. Kullak-Ublick

Bile acids are synthesized from cholesterol in the liver and are excreted into bile via the hepatocyte canalicular bile salt export pump. After their passage into the intestine, bile acids are reabsorbed in the ileum by sodium-dependent uptake across the apical membrane of enterocytes. At the basolateral domain of ileal enterocytes, bile acids are extruded into portal blood by the heterodimeric organic solute transporter OSTα/OSTβ. Although the transport function of OSTα/OSTβ has been characterized, little is known about the regulation of its expression. We show here that human OSTα/OSTβ expression is induced by bile acids through ligand-dependent transactivation of both OST genes by the nuclear bile acid receptor/farnesoid X receptor (FXR). FXR agonists induced endogenous mRNA levels of OSTα and OSTβ in cultured cells, an effect that was not discernible upon inhibition of FXR expression by small interfering RNAs. Furthermore, OST mRNAs were induced in human ileal biopsies exposed to the bile acid chenodeoxycholic acid. Reporter constructs containing OSTα or OSTβ promoters were transactivated by FXR in the presence of its ligand. Two functional FXR binding motifs were identified in the OSTα gene and one in the OSTβ gene. Targeted mutation of these elements led to reduced inducibility of both OST promoters by FXR. In conclusion, the genes encoding the human OSTα/OSTβ complex are induced by bile acids and FXR. By coordinated control of OSTα/OSTβ expression, bile acids may adjust the rate of their own efflux from enterocytes in response to changes in intracellular bile acid levels.


2017 ◽  
Vol 35 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Davor Slijepcevic ◽  
Stan F.J. van de Graaf

Background: Bile acids are potent signaling molecules that regulate glucose, lipid and energy homeostasis predominantly via the bile acid receptors farnesoid X receptor (FXR) and transmembrane G protein-coupled receptor 5 (TGR5). The sodium taurocholate cotransporting polypeptide (NTCP) and the apical sodium dependent bile acid transporter (ASBT) ensure an effective circulation of (conjugated) bile acids. The modulation of these transport proteins affects bile acid localization, dynamics and signaling. The NTCP-specific pharmacological inhibitor myrcludex B inhibits hepatic uptake of conjugated bile acids. Multiple ASBT-inhibitors are already in clinical trials to inhibit intestinal bile acid uptake. Here, we discuss current insights into the consequences of targeting bile acid uptake transporters on systemic and intestinal bile acid dynamics and discuss the possible therapeutic applications that evolve as a result.


Sign in / Sign up

Export Citation Format

Share Document