Mechanical properties of primate gallbladder: description by a dynamic method

1981 ◽  
Vol 241 (5) ◽  
pp. G376-G381 ◽  
Author(s):  
D. J. Schoetz ◽  
W. W. LaMorte ◽  
W. E. Wise ◽  
D. H. Birkett ◽  
L. F. Williams

Biomechanical theory was applied to devise a dynamic method for describing gallbladder tone in an in situ baboon model. Under pentobarbital sodium (Nembutal) anesthesia, cyclical infusion of bile into and withdrawal of bile from the gallbladder with continuous pressure monitoring allow instantaneous measurement of the pressure-volume ratio and thus of mean gallbladder compliance. This paper describes the method and details the manner of data analysis. Pharmacologic and hormonal agents with known gallbladder effects are used in order to demonstrate the sensitivity of the method. Pilocarpine, histamine, and cholecystokinin cause contraction of the primate gallbladder smooth muscle; this contraction is reflected in decreased compliance by continuous monitoring. Atropine administration results in increased ability to accommodate volume infusions; this effect has not been demonstrated by static monitoring in previous experiments. This new method allows continuous monitoring of compliance and offers both simplicity and sensitivity when compared with previous methods.

2008 ◽  
Vol 368-372 ◽  
pp. 1737-1739
Author(s):  
Qiang Qu ◽  
Wen Bo Han ◽  
Song He Meng ◽  
Xing Hong Zhang ◽  
Jie Cai Han

ZrB2-based ultra-high temperature ceramics (UHTCs) were prepared from a mixture powder of Zr/B4C/Si with different ratio via reactive hot pressing. The experimental results showed that the sintering temperature above 1800°C was necessary for enhancing the activity of the powders and thus improving the densification of the product. The sinterability and densification properties of ZrB2-based UHTCs meliorated with the amount of Si increasing. However, many large ZrB2 agglomerates formed when the amount of synthesized SiC in the product reached 25vol%, which led to decrease the mechanical property. The composite had highest mechanical properties when the volume ratio of ZrB2: SiC: ZrC was 73.86:20:6.14, and its flexual strength and the fracture toughness were 645.8MPa and 5.66MPa·m1/2 respectively. The microstructure investigation showed the in-situ formed SiC and ZrC were located in the triple point of ZrB2 grains with a size less than 3μm.


2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


2018 ◽  
Vol 60 (12) ◽  
pp. 1221-1224 ◽  
Author(s):  
Balachandran Gobalakrishnan ◽  
P. Ramadoss Lakshminarayanan ◽  
Raju Varahamoorthi

2021 ◽  
Vol 212 ◽  
pp. 108681
Author(s):  
Diqiang Liu ◽  
Aijun Zhang ◽  
Jiangang Jia ◽  
Jiesheng Han ◽  
Junyan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document