Effect of phenolphthalein on monkey intestinal water and electrolyte transport

1982 ◽  
Vol 243 (4) ◽  
pp. G268-G275
Author(s):  
D. W. Powell ◽  
P. T. Johnson ◽  
J. C. Bryson ◽  
R. C. Orlando ◽  
C. C. Fan

To assess Na-K-ATPase inhibiton and prostaglandin synthesis stimulation as the mechanism of the secretory (cathartic) action of phenolphthalein in the primate, we investigated water and electrolyte transport and Na-K-ATPase levels in monkey intestine. Both jejunum and colon were studied with in vivo perfusion and in vitro Ussing chamber techniques. Water, Na, and Cl absorption was inhibited or secretion was induced by phenolphthalein (10(-3) M) in the jejunum and colon when the drug was present in the mucosal bathing (perfusion) solution. Serosal addition of phenolphthalein (10(-4) or 10(-3) M) induced Na and anion absorption in the jejunum but not in the colon. Phenolphthalein inhibited Na-K-ATPase activity in the test tube, but assays of intestine previously perfused or bathed in the drug showed no inhibiton. Indomethacin, in doses sufficient to inhibit prostaglandin synthesis in the intestine, inhibited the secretion induced by phenolphthalein in the jejunum but not in the colon. These inconsistencies cast doubt on the role of Na-K-ATPase inhibition or the role of prostaglandin synthesis stimulation in the mechanism of action of phenolphthalein.

1995 ◽  
Vol 198 (12) ◽  
pp. 2547-2550 ◽  
Author(s):  
I J McGaw ◽  
J L Wilkens ◽  
B R McMahon ◽  
C N Airriess

Peptide neurohormones exist as functionally similar analogues in a wide variety of invertebrate and vertebrate phyla, and many have been implicated as cardiovascular regulators. In decapod crustaceans, these include the pentapeptide proctolin, crustacean cardioactive peptide (CCAP) and the FMRF amide-related peptides F1 and F2, all of which are found in the pericardial organs located immediately upstream of the heart. Cardioexcitatory activity has been demonstrated by these four peptides in both isolated and semi-isolated arthropod hearts; CCAP, however, has minimal effects on the heart of Cancer magister. In the present study, we determined the effects of proctolin, F1 and F2 on the heart of the crab C. magister in both in vitro (semi-isolated heart) and in vivo (whole animal) preparations. In semi-isolated hearts, infusion of each peptide caused cardioexcitation, increasing the rate and stroke volume of the heart. In whole crabs, the peptides were cardioinhibitory; the strongest effects were observed with F1 and F2, which dramatically decreased heart rate, cardiac stroke volume and cardiac output. These results cast doubt on current perceptions of the functional role of cardioactive peptides in the regulation of invertebrate cardiovascular performance in vivo.


2016 ◽  
Vol 371 (1706) ◽  
pp. 20150529 ◽  
Author(s):  
Diego Pesce ◽  
Niles Lehman ◽  
J. Arjan G. M. de Visser

The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of ‘extracellular recombination’ during the origin of life. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
HM Lee ◽  
TG Ahn ◽  
CW Kim ◽  
HJ An
Keyword(s):  

1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


1971 ◽  
Vol 66 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Gerald Burke

ABSTRACT A long-acting thyroid stimulator (LATS), distinct from pituitary thyrotrophin (TSH), is found in the serum of some patients with Graves' disease. Despite the marked physico-chemical and immunologic differences between the two stimulators, both in vivo and in vitro studies indicate that LATS and TSH act on the same thyroidal site(s) and that such stimulation does not require penetration of the thyroid cell. Although resorption of colloid and secretion of thyroid hormone are early responses to both TSH and LATS, available evidence reveals no basic metabolic pathway which must be activated by these hormones in order for iodination reactions to occur. Cyclic 3′, 5′-AMP appears to mediate TSH and LATS effects on iodination reactions but the role of this compound in activating thyroidal intermediary metabolism is less clear. Based on the evidence reviewed herein, it is suggested that the primary site of action of thyroid stimulators is at the cell membrane and that beyond the(se) primary control site(s), there exists a multifaceted regulatory system for thyroid hormonogenesis and cell growth.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


The role of vitamin D is implicated in carcinogenesis through numerous biological processes like induction of apoptosis, modulation of immune system inhibition of inflammation and cell proliferation and promotion of cell differentiation. Its use as additional adjuvant drug with cancer treatment may be novel combination for improved outcome of different cancers. Numerous preclinical, epidemiological and clinical studies support the role of vitamin D as an anticancer agent. Anticancer properties of vitamin D have been studied widely (both in vivo and in vitro) among various cancers and found to have promising results. There are considerable data that indicate synergistic potential of calcitriol and antitumor agents. Possible mechanisms for modulatory anticancer activity of vitamin D include its antiproliferative, prodifferentiating, and anti-angiogenic and apoptic properties. Calcitriol reduces invasiveness and metastatic potential of many cancer cells by inhibiting angiogenesis and regulating expression of the key molecules involved in invasion and metastasis. Anticancer activity of vitamin D is synergistic or additive with the antineoplastic actions of several drugs including cytotoxic chemotherapy agents like paclitaxel, docetaxel, platinum base compounds and mitoxantrone. Benefits of addition of vitamin D should be weighed against the risk of its toxicity.


Sign in / Sign up

Export Citation Format

Share Document