Tachykinins: local gastric effects and brain stem responses

1987 ◽  
Vol 252 (3) ◽  
pp. G365-G373 ◽  
Author(s):  
W. D. Barber ◽  
G. D. Stevenson ◽  
T. F. Burks

The gastric motor or mechanical effects of a group of peptides, the tachykinins, were evaluated in anesthetized cats to determine the relationship between local motor events and brain stem neurons that regulate gastric activity. The peptides evaluated were substance P, physalaemin, and eledoisin. The tachykinin-induced gastric changes were dose related and were characterized by initial distention-sustained contraction-late distention phases. At lower doses distention was the dominant effect with a sustained contraction-late distention response appearing as the dose increased. The sustained contraction-late distention phases were frequently accompanied by phasic contractions with a frequency of 2-4/min. Atropine had a significant effect on the sustained contraction phase but no effect on the phasic contractions or distention phases. Bilateral cervical vagotomy had a significant effect on the early distention phase, suggesting a link with brain stem mechanisms. The activity of brain stem units that responded to phasic distention of the stomach reflected the tachykinin-induced changes in gastric distention. Although the gastric effects of these tachykinins shared distinct similarities, certain differences in the time sequence of the distention-contraction interactions suggests the possibility that dissimilar receptor types may be involved in the mechanisms of action. Their mechanisms of action may also involve a direct effect on the effector organ.

2019 ◽  
Vol 77 (9) ◽  
Author(s):  
Narges Dastmalchi ◽  
Seyed Mahdi Banan Khojasteh ◽  
Mirsaed Miri Nargesi ◽  
Reza Safaralizadeh

ABSTRACT Helicobacter pylori infection performs a key role in gastric tumorigenesis. Long non-coding RNAs (lncRNAs) have demonstrated a great potential to be regarded as effective malignancy biomarkers for various gastrointestinal diseases including gastric cancer (GC). The present review highlights the relationship between lncRNAs and H. pylori in GC. Several studies have examined not only the involvement of lncRNAs in H. pylori-associated GC progression but also their molecular mechanisms of action. Among the pertinent studies, some have addressed the effects of H. pylori infection on modulatory networks of lncRNAs, while others have evaluated the effects of changes in the expression level of lncRNAs in H. pylori-associated gastric diseases, especially GC. The relationship between lncRNAs and H. pylori was found to be modulated by various molecular pathways.


Author(s):  
Angelica Mazzoletti ◽  
Domenico Albano ◽  
Francesco Bertagna ◽  
Claudio Tinoco Mesquita ◽  
Raffaele Giubbini

Abstract Background-Aim The relationship between perfusion pattern and stress-induced changes in Left Ventricular Mechanical Dyssynchrony (LVMD) has been previously described with controversial results using stress-rest perfusion imaging studies. The aim of this study was to assess the relationship between perfusion pattern and stress-induced changes in LVMD usingo regadenoson/rest13N-NH3 PET/CT. Methods There were 74 patients who underwent stress-rest 13N-NH PET/CT from January 2014 to October 2018 excluding patients with left bundle branch block, ventricular pacing and myocardial necrosis. The patients were divided into those with reversible perfusion defects at stress (Ischemic group, n = 18) and patients without reversible perfusion defects (non-ischemic group, n = 56). The LVMD parameters included: phase standard deviation (PSD) and phase histogram bandwidth (PHB), after stress and at rest. The ΔPSD (post-stressPSD-restPSD) and ΔPHB (post-stressPHB—restPHB) were calculated to measure stress-induced changes in LVMD. Results There were no significant differences in LVMD parameters between post-stress and at rest in both groups. The PSD post-stress, ΔPSD and PHB post-stress were significantly higher in the ischemic group. Conclusions Using a vasodilator as a stress, the PSD and PHB post-stress and ΔPSD were significantly higher in the ischemic patients than the non-ischemic group, while there were no significant differences in each cohort between stress and rest indices.


2020 ◽  
Vol 33 (15) ◽  
pp. 6297-6314 ◽  
Author(s):  
Aurélien Ribes ◽  
Soulivanh Thao ◽  
Julien Cattiaux

AbstractDescribing the relationship between a weather event and climate change—a science usually termed event attribution—involves quantifying the extent to which human influence has affected the frequency or the strength of an observed event. In this study we show how event attribution can be implemented through the application of nonstationary statistics to transient simulations, typically covering the 1850–2100 period. The use of existing CMIP-style simulations has many advantages, including their availability for a large range of coupled models and the fact that they are not conditional to a given oceanic state. We develop a technique for providing a multimodel synthesis, consistent with the uncertainty analysis of long-term changes. Last, we describe how model estimates can be combined with historical observations to provide a single diagnosis accounting for both sources of information. The potential of this new method is illustrated using the 2003 European heat wave and under a Gaussian assumption. Results suggest that (i) it is feasible to perform event attribution using transient simulations and nonstationary statistics, even for a single model; (ii) the use of multimodel synthesis in event attribution is highly desirable given the spread in single-model estimates; and (iii) merging models and observations substantially reduces uncertainties in human-induced changes. Investigating transient simulations also enables us to derive insightful diagnostics of how the targeted event will be affected by climate change in the future.


1968 ◽  
Vol 17 (1) ◽  
pp. 182-184
Author(s):  
Pierre Dustin

Recently discovered substances with antimitotic action fall in the two categories which have been defined since many years, i. e. spindle poisons and chromatin (or “radiomimetic”) poisons. The most recently studied are hydroxyurea — a powerful inhibitor of DNA synthesis — and the Vinca alcaloids — which destroy the tubular components of the spindle, bringing a prolonged arrest in metaphase.The mechanisms of action of many of these drugs remain most obscure. In the field of spindle-poisons, there has been no explanation sofar of the relationship between their chemical structure and cytological action. While it is known that minor changes in the chemical structure of colchicine can prevent its specific action on the spindle, the precise relation which appears to exist between this complex molecule and the spindle structures remains obscure. The same remark applies to the Vinca alcaloids. Progress is being made however in this field. The ultrastructural aspects of the spindle have been analysed by electron microscopy, and a precise definition in chemical terms of the spindle may be close. These observations have shown the similarity between the tubules of the spindle and other tubular structures of identifical size: the neurotubules. Some recent observations indicate that these may also be destroyed by colchicine, a fact which may be related to the well-known and severe neurotoxicity of this alcaloid. What remains to be explained is the fact that the most effective spindle poisons are molecules of the size and complexity of those of vinblastine, while simple inorganic substances (arsenicals, heavy metals) may exert identical if not so powerful effects on the spindle structures. Another point which needs further research is the cause of the extensive cellular destruction which follows, in animal cells, any prolonged inhibition of the spindle function. The chemotherapic actions of spindle poisons are most probably related, not only to the growth inhibiting effects of these drugs, but most of all to the cellular breakdown which is observed in cells when they have been kept for several hours in metaphase.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Xing-Xing Liu ◽  
Chang-Bin Sun ◽  
Ting-Tong Yang ◽  
Da Li ◽  
Chun-Yan Li ◽  
...  

The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Rats received an intraperitoneal glucose injection (2 g/kg) with (sham-nicotinamide and burn-nicotinamide groups) or without (sham-operated and burn groups) coadministration of nicotinamide (100 mg/kg). The results showed that the mRNA of all detoxification-related enzymes tested was detected in sham-operated skin but not in burned skin. The clearance of nicotinamide andN1-methylnicotinamide in burned rats was significantly decreased compared with that in sham-operated rats. After glucose loading, burn group showed significantly higher plasma insulin levels with a lower muscle glycogen level than that of sham-operated and sham-nicotinamide groups, although there were no significant differences in blood glucose levels over time between groups. More profound changes in plasma H2O2and insulin levels were observed in burn-nicotinamide group. It may be concluded that decreased skin detoxification may increase the risk for oxidative stress and insulin resistance.


2016 ◽  
Vol 19 ◽  
Author(s):  
Anja Pahor ◽  
Norbert Jaušovec

AbstractA brief overview of structural and functional brain characteristics related to g is presented in the light of major neurobiological theories of intelligence: Neural Efficiency, P-FIT and Multiple-Demand system. These theories provide a framework to discuss the main objective of the paper: what is the relationship between individual alpha frequency (IAF) and g? Three studies were conducted in order to investigate this relationship: two correlational studies and a third study in which we experimentally induced changes in IAF by means of transcranial alternating current stimulation (tACS). (1) In a large scale study (n = 417), no significant correlations between IAF and IQ were observed. However, in males IAF positively correlated with mental rotation and shape manipulation and with an attentional focus on detail. (2) The second study showed sex-specific correlations between IAF (obtained during task performance) and scope of attention in males and between IAF and reaction time in females. (3) In the third study, individuals’ IAF was increased with tACS. The induced changes in IAF had a disrupting effect on male performance on Raven’s matrices, whereas a mild positive effect was observed for females. Neuro-electric activity after verum tACS showed increased desynchronization in the upper alpha band and dissociation between fronto-parietal and right temporal brain areas during performance on Raven’s matrices. The results are discussed in the light of gender differences in brain structure and activity.


Sign in / Sign up

Export Citation Format

Share Document