Effect of Yersinia enterocolitica on intestinal mucin secretion

1989 ◽  
Vol 256 (2) ◽  
pp. G319-G327 ◽  
Author(s):  
M. Mantle ◽  
E. Thakore ◽  
J. Hardin ◽  
D. G. Gall

Mucin and glycoprotein synthesis and secretion were evaluated in the upper, mid, and distal small intestine and in the proximal colon of rabbits infected with Yersinia enterocolitica (YE). Infected (INF) animals were examined on day 6 and compared with pair-fed controls and unmanipulated weight-matched rabbits. Tissue mucin content in vivo and mucin secretion in vitro, measured by a specific immunoassay, were significantly elevated in all four regions of the gut of INF rabbits compared with both control groups. In vitro secretion of stored glycoprotein, prelabeled with [3H]glucosamine, was not increased in the upper and mid small intestine of INF animals but was significantly elevated in the distal small intestine and proximal colon. In vitro incorporation of [14C]glucosamine was increased in all four regions of the gut of INF rabbits, but secretion of newly synthesized [14C]glycoprotein was only significantly elevated in the distal small intestine and proximal colon. A graded response was observed down the intestinal tract of INF rabbits, with the greatest increase in mucin content, synthesis and secretion occurring in the distal small intestine and proximal colon where the morphological impact of disease is also most severe.

1981 ◽  
Vol 240 (1) ◽  
pp. G10-G16 ◽  
Author(s):  
J. F. Forstner ◽  
N. W. Roomi ◽  
R. E. Fahim ◽  
G. G. Forstner

In vitro secretion of goblet cell mucin from rat small intestine was measured using a double-antibody radioimmunoassay for mucin. Cholera toxin (12.5-50 mg crude filtrate/ml) added to incubations of intestinal slices caused a dose-dependent increase in mucin secretion. By 90 min there was a four- to fivefold enhancement in secretion over noncholera-treated controls. Crude filtrate (dialyzed or nondialyzed) was a more effective mucin secretogogue than purified enterotoxin. Secretion was also assessed by administering [1-14C]glucosamine intraperitoneally to rats in vivo and 3 h later monitoring in vitro secretion of radioactive glycoprotein from intestinal slices. Cholera filtrate (12.5-50 mg/ml) caused a 1.5- to 2.0-fold enhancement in secretion after 90 min. The radioactivity data, however, underestimated total mucin secretion and the dependency of secretion on the dose of cholera filtrate. Cholera preparations also caused an enhancement (20-30% over controls) in the incorporation of [3H]glucosamine into tissue acid-precipitable glycoprotein, indicating a stimulation of glycoprotein synthesis. In the same experiments it was noted that the secretion of 3H-labeled (i.e., newly glycosylated) glycoprotein was increased 2.5- to 3.0-fold over untreated controls. Assuming that radioactivity partially reflects mucin synthetic and secretory events, it is possible, therefore, that cholera toxin promotes the release of both "old" mucin from storage granules as well as the synthesis and secretion of "new" mucin formed in goblet cells during incubation.


1998 ◽  
Vol 274 (5) ◽  
pp. G945-G954 ◽  
Author(s):  
Michelina Plateroti ◽  
Deborah C. Rubin ◽  
Isabelle Duluc ◽  
Renu Singh ◽  
Charlotte Foltzer-Jourdainne ◽  
...  

The intestine is characterized by morphofunctional differences along the proximodistal axis. The aim of this study was to derive mesenchymal cell lines representative of the gut axis. We isolated and cloned rat intestinal subepithelial myofibroblasts raised from 8-day proximal jejunum, distal ileum, and proximal colon lamina propria. Two clonal cell lines from each level of the gut were characterized. They 1) express the specific markers vimentin, smooth muscle α-actin, and smooth muscle myosin heavy chain, revealed by immunofluorescence microscopy and 2) distinctly support endodermal cell growth in a coculture model, depending on their regional origin, and 3) the clones raised from the various proximodistal regions maintain the same pattern of morphogenetic and growth and/or differentiation factor gene expression as in vivo: hepatocyte growth and/or scatter factor and transforming growth factor-β1 mRNAs analyzed by RT-PCR were more abundant, in the colon and ileal clones and mucosal connective tissue, respectively. In addition, epimorphin mRNA studied by Northern blot was also the highest in one ileal clone, in which it was selectively upregulated by all-trans retinoic acid (RA) treatment. Epimorphin expression in isolated 8-day intestinal lamina propria was higher in the distal small intestine and proximal colon than in the proximal small intestine. In conclusion, we isolated and characterized homogeneous cell subtypes that can now be used to approach the molecular regulation of the epithelium-mesenchyme-dependent regional specificity along the gut.


1986 ◽  
Vol 250 (4) ◽  
pp. G412-G419
Author(s):  
H. P. Schedl ◽  
D. L. Miller ◽  
R. L. Horst ◽  
H. D. Wilson ◽  
K. Natarajan ◽  
...  

We previously found intestinal Ca2+ transport to be lower in the spontaneously hypertensive (SH) as compared with the Wistar-Kyoto control (WKY) rat. These animals were fed a relatively high (1%) Ca2+ diet, and the concentration of 1 alpha,25-dihydroxycholecalciferol [1 alpha,25(OH)2D3] in serum was the same in both groups. In the present experiment we tested the possibility that the lower Ca2+ transport in the SH rat was the result of unresponsiveness to 1 alpha,25(OH)2D3. We fed diets high and low in Ca2+ and measured serum 1 alpha,25(OH)2D3 and Ca2+ transport. Serum 1 alpha,25(OH)2D3 increased in response to Ca2+ depletion at both 5 and 12 wk in both the WKY and SH rat. With high-Ca2+ diet, Ca2+ transport was lower in SH than in WKY when studied 1) in vitro in duodenum at 5 wk of age, and 2) in vivo in proximal and distal small intestine at 12 wk of age. Ca2+ transport increased in SH in response to Ca2+ depletion, but not in WKY, except in distal small intestine in vivo at 12 wk. In summary, although Ca2+ transport is lower in the SH as compared with the WKY rat when vitamin D activity is basal through feeding a high-Ca2+ diet, Ca2+ transport increases in the SH rat in response to the increase in 1 alpha,25(OH)2D3 produced by feeding a low-Ca2+ diet. We conclude that 1) the vitamin D-regulated component of mediated Ca2+ transport is intact in the SH rat and is unrelated to hypertension, and 2) mediated Ca2+ transport under basal conditions, i.e., nonvitamin D-regulated, differs in the SH and WKY rats and may be related to hypertension.


1984 ◽  
Vol 247 (2) ◽  
pp. G140-G148 ◽  
Author(s):  
N. Roomi ◽  
M. Laburthe ◽  
N. Fleming ◽  
R. Crowther ◽  
J. Forstner

Purified cholera enterotoxin (20-50 micrograms) and dialyzed cholera filtrate (50-125 mg) increased net glycoprotein synthetic and secretory rates in rat intestinal epithelium. Specific goblet cell mucin secretion was increased 5- to 10-fold. However, other agents that increase intestinal cAMP and accelerate glycoprotein synthesis did not enhance mucin secretion. This was true for dibutyryl cAMP (10(-3) and 10(-2) M) with or without theophylline (10(-3) M) and isoproterenol (10(-4) M) with or without dibutyryl cAMP (10(-3) M). Hyperosmotic mannitol (450 mosmol/l), which increases fluid secretion but does not affect cAMP, and vasoactive intestinal peptide (2 X 10(-7) M), which increases both fluid secretion and cAMP, both failed to increase mucin secretion, implying that fluid "washout" of mucin adherent to the mucosal surface is not responsible for cholera-induced mucin secretion. Cycloheximide, an inhibitor of cholera diarrhea in vivo (20 mg/kg) or in vitro (1 mM), effectively abolished [3H]leucine incorporation into protein but did not affect cholera-induced mucin secretion. Colchicine (10-50 mg/kg) given to block microtubule assembly was similarly without effect on mucin secretion. These findings suggest that there is a dissociation of electrolyte/fluid and mucin secretory processes and cast doubt on the widely accepted notion that all cholera effects are mediated via the well-known adenylate cyclase-cAMP mechanism.


1993 ◽  
Vol 265 (6) ◽  
pp. G1050-G1056 ◽  
Author(s):  
B. A. Moore ◽  
K. A. Sharkey ◽  
M. Mantle

We examined the role of enteric nerves in cholera toxin (CT)-induced mucin secretion in proximal and distal regions of rat small intestine. Stimulation of intestinal loops with 120 micrograms (1.5 mumol) CT using an in vitro open-loop model resulted in an approximately four-fold increase in luminal mucin content over unstimulated controls in both regions of the gut. Prior treatment of loops with tetrodotoxin had no effect on the amount of mucin released in response to CT. However, permanent destruction of primary sensory afferent nerves by neonatal treatment of rats with capsaicin reduced the mucin response to CT to baseline levels in both regions. In normal animals, atropine resulted in approximately 40% inhibition of mucin secretion in both the proximal and distal small intestine. The atropine-sensitive secretory response appears to be a component of the capsaicin-sensitive response. These results suggest that choleraic mucin secretion is mediated primarily by a capsaicin-sensitive neurogenic pathway involving local activation of sensory nerves, which may then elicit mucin secretion through interaction with cholinergic nerves.


2017 ◽  
Vol 84 (2) ◽  
Author(s):  
Silvia W. Gratz ◽  
Valerie Currie ◽  
Anthony J. Richardson ◽  
Gary Duncan ◽  
Grietje Holtrop ◽  
...  

ABSTRACT Mycotoxin contamination of cereal grains causes well-recognized toxicities in animals and humans, but the fate of plant-bound masked mycotoxins in the gut is less well understood. Masked mycotoxins have been found to be stable under conditions prevailing in the small intestine but are rapidly hydrolyzed by fecal microbiota. This study aims to assess the hydrolysis of the masked mycotoxin deoxynivalenol-3-glucoside (DON3Glc) by the microbiota of different regions of the porcine intestinal tract. Intestinal digesta samples were collected from the jejunum, ileum, cecum, colon, and feces of 5 pigs and immediately frozen under anaerobic conditions. Sample slurries were prepared in M2 culture medium, spiked with DON3Glc or free deoxynivalenol (DON; 2 nmol/ml), and incubated anaerobically for up to 72 h. Mycotoxin concentrations were determined using liquid chromatography-tandem mass spectrometry, and the microbiota composition was determined using a quantitative PCR methodology. The jejunal microbiota hydrolyzed DON3Glc very slowly, while samples from the ileum, cecum, colon, and feces rapidly and efficiently hydrolyzed DON3Glc. No further metabolism of DON was observed in any sample. The microbial load and microbiota composition in the ileum were significantly different from those in the distal intestinal regions, whereas those in the cecum, colon and feces did not differ. IMPORTANCE Results from this study clearly demonstrate that the masked mycotoxin DON3Glc is hydrolyzed efficiently in the distal small intestine and large intestine of pigs. Once DON is released, toxicity and absorption in the distal intestinal tract likely occur in vivo. This study further supports the need to include masked metabolites in mycotoxin risk assessments and regulatory actions for feed and food.


1985 ◽  
Vol 248 (1) ◽  
pp. G133-G141 ◽  
Author(s):  
P. C. Will ◽  
R. N. Cortright ◽  
R. G. Groseclose ◽  
U. Hopfer

Secondary hyperaldosteronism produced by Na+ depletion was associated with increases in salt and fluid absorption in both the small intestine and the distal colon but not in the cecum and the proximal colon. Because these changes had not been documented for the small intestine, this study focused on the regulation of this tissue. Increased NaCl and water absorption was expressed in vitro by increases in short-circuit current and transepithelial potential and in vivo by increased fluid absorption and a decreased luminal content of Na+ and water. For example, the short-circuit current in the ileum of Na+-depleted rats was 2-fold that of adrenalectomized and 1.3-fold that of adrenal-intact control animals. The short-circuit current was inhibitable 24 +/- 14% by micromolar concentrations of amiloride in Na+-deficient animals compared with 1 +/- 3% in control animals. Similarly, ileal fluid absorption in vivo was 2.3-fold higher in Na+-deficient relative to control animals. The additional fluid absorption was sensitive to 50 microM amiloride, whereas amiloride had no effect in control animals. Furthermore, the Na+ content of the chyme from the ileum of Na+-deficient animals was about half that of controls. These results suggest that mineralocorticoids can induce the amiloride-sensitive Na+ transporter in the small intestine and that this type of epithelial salt transport can become a major pathway for salt retention by the small intestine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Moe Ichikawa ◽  
Hiroki Akamine ◽  
Michika Murata ◽  
Sumito Ito ◽  
Kazuo Takayama ◽  
...  

AbstractCaco-2 cells are widely used as an in vitro intestinal epithelial cell model because they can form a monolayer and predict drug absorption with high accuracy. However, Caco-2 cells hardly express cytochrome P450 (CYP), a drug-metabolizing enzyme. It is known that CYP3A4 is the dominant drug-metabolizing enzyme in human small intestine. In this study, we generated CYP3A4-expressing Caco-2 (CYP3A4-Caco-2) cells and attempted to establish a model that can simultaneously evaluate drug absorption and metabolism. CYP3A4-Caco-2 cells were generated by piggyBac transposon vectors. A tetracycline-controllable CYP3A4 expression cassette (tet-on system) was stably transduced into Caco-2 cells, thus regulating the levels of CYP3A4 expression depending on the doxycycline concentration. The CYP3A4 expression levels in CYP3A4-Caco-2 cells cultured in the presence of doxycycline were similar to or higher than those of adult small intestine. The CYP3A4-Caco-2 cells had enough ability to metabolize midazolam, a substrate of CYP3A4. CYP3A4 overexpression had no negative effects on cell proliferation, barrier function, and P-glycoprotein activity in Caco-2 cells. Thus, we succeeded in establishing Caco-2 cells with CYP3A4 metabolizing activity comparable to in vivo human intestinal tissue. This cell line would be useful in pharmaceutical studies as a model that can simultaneously evaluate drug absorption and metabolism.


1979 ◽  
Vol 41 (1) ◽  
pp. 47-51 ◽  
Author(s):  
D. F. Evered ◽  
F. Sadoogh-Abasian

1. The disaccharide lactulose (galactosyl-β-1,4-fructose) was poorly absorbed from rat small intestine in vitro and human mouth in vivo.2. These results confirm indirect clinical evidence of poor absorption from the intestine.3. The presence of calcium ions, or absence of sodium ions, had no effect on lactulose absorption from the buccal cavity.4. The presence of ouabain, or absence of Na+, did not decrease the absorption of lactulose from small intestine.5. It is thought that the mode of transport, in both instances, is by passive diffusion with the concentration gradient.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1522
Author(s):  
Bin Zeng ◽  
Hailong Wang ◽  
Junyi Luo ◽  
Meiying Xie ◽  
Zhengjiang Zhao ◽  
...  

Secretory immunoglobulin A (SIgA) plays an important role in gut acquired immunity and mucosal homeostasis. Breast milk is the irreplaceable nutritional source for mammals after birth. Current studies have shown the potential functional role of milk-derived small extracellular vesicles (sEVs) and their RNAs cargo in intestinal health and immune regulation. However, there is a lack of studies to demonstrate how milk-derived sEVs affect intestinal immunity in recipient. In this study, through in vivo experiments, we found that porcine milk small extracellular vesicles (PM-sEVs) promoted intestinal SIgA levels, and increased the expression levels of polymeric immunoglobulin receptor (pIgR) both in mice and piglet. We examined the mechanism of how PM-sEVs increased the expression level of pIgR in vitro by using a porcine small intestine epithelial cell line (IPEC-J2). Through bioinformatics analysis, dual-luciferase reporter assays, and overexpression or knockdown of the corresponding non-coding RNAs, we identified circ-XPO4 in PM-sEVs as a crucial circRNA, which leads to the expression of pIgR via the suppression of miR-221-5p in intestinal cells. Importantly, we also observed that oral administration of PM-sEVs increased the level of circ-XPO4 and decreased the level of miR-221-5p in small intestine of piglets, indicating that circRNAs in milk-derived sEVs act as sponge for miRNAs in recipients. This study, for the first time, reveals that PM-sEVs have a capacity to stimulate intestinal SIgA production by delivering circRNAs to receptors and sponging the recipient’s original miRNAs, and also provides valuable data for insight into the role and mechanism of animal milk sEVs in intestinal immunity.


Sign in / Sign up

Export Citation Format

Share Document