Nitric oxide modulates hepatic vascular tone in normal rat liver

1994 ◽  
Vol 267 (3) ◽  
pp. G416-G422 ◽  
Author(s):  
M. K. Mittal ◽  
T. K. Gupta ◽  
F. Y. Lee ◽  
C. C. Sieber ◽  
R. J. Groszmann

This study investigated whether nitric oxide (NO) plays a role in the intrahepatic portal circulation in normal rat livers perfused in situ. N omega-nitro-L-arginine (NNA), a specific NO biosynthesis inhibitor, significantly increased baseline portal pressure compared with controls (P < 0.05). Concentration-effect curves to norepinephrine (NE) were performed. Perfusate flow was maintained as constant, and perfusion pressure was continuously measured. NNA markedly enhanced the responsiveness to NE. This effect was abolished by the addition of L-arginine, a specific NO substrate. Presence of indomethacin did not alter the response to NE. The response to NE in the presence of indomethacin and NNA was significantly more than the response to NE in the presence of NNA alone. In vivo, intraportal infusion of NNA significantly enhanced the portal pressure compared with vehicle. This study demonstrates that NO contributes to the basal vascular tone and attenuates the response to NE in intrahepatic portal vascular bed of normal rats. These results support a functional role of NO in the regulation of the intrahepatic portal circulation in normal rats. This study also suggests a synergistic, albeit limited, role of prostacyclin in the intrahepatic circulation.

1993 ◽  
Vol 3 (8) ◽  
pp. 1435-1441
Author(s):  
L Raij ◽  
P J Shultz

The endothelium-derived relaxing factor nitric oxide (EDRF/NO) is a labile, endogenous vasodilator that is important in the control of systemic vascular tone. This review focuses on the effects of EDRF/NO on glomerular mesangial cells in vitro and on the role of EDRF/NO in mesangial and glomerular physiology and pathophysiology in vivo. It was concluded that EDRF/NO can stimulate increases in cGMP, inhibit mesangial cell contraction, and inhibit growth factor-induced proliferation of mesangial cells in culture. Furthermore, incubation with endotoxin or cytokines stimulates mesangial cells to produce EDRF/NO, via an inducible NO synthase enzyme. Therefore, it is likely that NO could play a role in the inflammatory response within the glomerulus. Finally, recent studies providing evidence that EDRF/NO is functional within the glomerulus in vivo, especially during endotoxemia and inflammation are also reviewed.


2002 ◽  
Vol 282 (6) ◽  
pp. R1636-R1642 ◽  
Author(s):  
Alan Wells ◽  
W. Gary Anderson ◽  
Neil Hazon

Acclimation of the European lesser-spotted dogfish Scyliorhinus canicula to reduced environmental salinity [85–70% seawater (SW)] induced a significant diuresis in addition to a significant decrease in plasma osmolality in vivo. The threshold for this diuresis was determined to be 85% SW. Therefore, S. canicula acclimated to 85% SW was selected for further study as a diuretic model in the development of an in situ perfused kidney preparation. The renal role of arginine vasotocin (AVT) in the in situ perfused trunk preparation was investigated. In SW, perfusion of 10−9 and 10−10 M AVT resulted in a glomerular antidiuresis and decreases in tubular transport maxima for glucose and perfusate flow. In 85% SW, 10−10 M AVT had no significant effect on these renal parameters with the exception of transport maxima for glucose and perfusate flow. Tubular parameters remained unchanged by either 10−9 or 10−10 M AVT. The results demonstrate that the perfused kidney preparation was a viable tool for the investigation of renal parameters in elasmobranch fish and that AVT induced a glomerular antidiuresis.


1993 ◽  
Vol 265 (6) ◽  
pp. H2110-H2116
Author(s):  
R. Y. Chen ◽  
G. Ross ◽  
K. Y. Chyu ◽  
P. H. Guth

The role of L-arginine-derived nitric oxide (NO) in cholinergic vasodilation of resistance vessels was studied in the intact stomach of the rat, utilizing an in vivo microscopy technique. Two L-arginine analogues, NG-monomethyl-L-arginine (L-NMMA) and nitro-L-arginine methyl ester (L-NAME), were used to block NO synthesis. Cholinergic dilation of gastric submucosal arterioles was induced by topical application of various concentrations of acetylcholine (ACh) (10(-7)-10(-4) M). Intravenous but not topical administration of L-NMMA and L-NAME caused an increase in arterial pressure. Intravenous or topical L-NAME reduces resting arteriolar diameter. These findings support the contention that NO formation modulates basal vascular tone and suggest that NO release may play a significant role in the regulation of the gastric circulation. L-Arginine analogues attenuated the arteriolar dilating effect of ACh but not adenosine or nitroglycerin. Substantial arteriolar responses to ACh remained after systemic or topical treatment with either L-NMMA or L-NAME. These results indicate that the L-arginine-NO pathway accounts only in part for ACh-induced vasodilation in gastric resistance vessels in vivo.


2000 ◽  
Vol 68 (8) ◽  
pp. 4653-4657 ◽  
Author(s):  
Alain P. Gobert ◽  
Sylvie Daulouede ◽  
Michel Lepoivre ◽  
Jean Luc Boucher ◽  
Bernard Bouteille ◽  
...  

ABSTRACT Nitric oxide (NO) is an important effector molecule of the immune system in eliminating numerous pathogens. Peritoneal macrophages fromTrypanosoma brucei brucei-infected mice express type II NO synthase (NOS-II), produce NO, and kill parasites in the presence ofl-arginine in vitro. Nevertheless, parasites proliferate in the vicinity of these macrophages in vivo. The present study shows thatl-arginine availability modulates NO production. Trypanosomes use l-arginine for polyamine synthesis, required for DNA and trypanothione synthesis. Moreover, arginase activity is up-regulated in macrophages from infected mice from the first days of infection. Arginase competes with NOS-II for their common substrate, l-arginine. In vitro, arginase inhibitors decreased urea production, increased macrophage nitrite production, and restored trypanosome killing. In vivo, a dramatic decrease inl-arginine concentration was observed in plasma from infected mice. In situ restoration of NO production and trypanosome killing were observed when excess l-arginine, but notd-arginine or l-arginine plusN ω-nitro-l-arginine (a NOS inhibitor), was injected into the peritoneum of infected mice. These data indicate the role of l-arginine depletion, induced by arginase and parasites, in modulating the l-arginine–NO pathway under pathophysiological conditions.


Circulation ◽  
1997 ◽  
Vol 96 (9) ◽  
pp. 3104-3111 ◽  
Author(s):  
Yoshihiro Fukumoto ◽  
Hiroaki Shimokawa ◽  
Toshiyuki Kozai ◽  
Toshiaki Kadokami ◽  
Kouichi Kuwata ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


2021 ◽  
Vol 21 (10) ◽  
pp. 8195-8211
Author(s):  
Ivan Tadic ◽  
Clara M. Nussbaumer ◽  
Birger Bohn ◽  
Hartwig Harder ◽  
Daniel Marno ◽  
...  

Abstract. Mechanisms of tropospheric ozone (O3) formation are generally well understood. However, studies reporting on net ozone production rates (NOPRs) directly derived from in situ observations are challenging and are sparse in number. To analyze the role of nitric oxide (NO) in net ozone production in the upper tropical troposphere above the Atlantic Ocean and western Africa, we present in situ trace gas observations obtained during the CAFE-Africa (Chemistry of the Atmosphere: Field Experiment in Africa) campaign in August and September 2018. The vertical profile of in situ measured NO along the flight tracks reveals lowest NO mixing ratios of less than 20 pptv between 2 and 8 km altitude and highest mixing ratios of 0.15–0.2 ppbv above 12 km altitude. Spatial distribution of tropospheric NO above 12 km altitude shows that the sporadically enhanced local mixing ratios (>0.4 ppbv) occur over western Africa, which we attribute to episodic lightning events. Measured O3 shows little variability in mixing ratios at 60–70 ppbv, with slightly decreasing and increasing tendencies towards the boundary layer and stratosphere, respectively. Concurrent measurements of CO, CH4, OH, HO2 and H2O enable calculations of NOPRs along the flight tracks and reveal net ozone destruction at −0.6 to −0.2 ppbv h−1 below 6 km altitude and balance of production and destruction around 7–8 km altitude. We report vertical average NOPRs of 0.2–0.4 ppbv h−1 above 12 km altitude with NOPRs occasionally larger than 0.5 ppbv h−1 over western Africa coincident with enhanced NO. We compare the observational results to simulated data retrieved from the general circulation model ECHAM/MESSy Atmospheric Chemistry (EMAC). Although the comparison of mean vertical profiles of NO and O3 indicates good agreement, local deviations between measured and modeled NO are substantial. The vertical tendencies in NOPRs calculated from simulated data largely reproduce those from in situ experimental data. However, the simulation results do not agree well with NOPRs over western Africa. Both measurements and simulations indicate that ozone formation in the upper tropical troposphere is NOx limited.


1995 ◽  
Vol 9 (3) ◽  
pp. 255-269 ◽  
Author(s):  
G.H. Bowden

Models of the caries process have made significant contributions toward defining the roles of bacteria in caries. Microbiologists use a variety of in vitro systems to model aspects of the caries process. Also, in situ models in humans provide information on the microbiology of caries in vivo. These models do not involve the entire process leading to natural caries; consequently, the results from such studies are used to deduce the roles of bacteria in natural caries. Therefore, they can be described as Inferential Caries Models. In contrast, animal models and some clinical trials in humans involve natural caries and can be described as Complete Caries Models. Furthermore, these models are used in two distinct ways. They can be used as Exploratory Models to explore different aspects of the caries process, or as Test Models to determine the effects of anticaries agents. This dichotomy in approach to the use of caries models results in modification of the models to suit a particular role. For example, if we consider Exploratory Models, the in situ appliance in humans is superior to others for analyzing the microbiology of plaque development and demineralization in vivo. The chemostat and biofilm models are excellent for exploring factors influencing bacterial interactions. Both models can also be used as Test Models. The in situ model has been used to test the effects of fluoride on the microflora and demineralization, while the chemostat and biofilm models allow for the testing of antibacterial agents. Each model has its advantages and disadvantages and role in analysis of the caries process. Selection of the model depends on the scientific question posed and the limitations imposed by the conditions available for the study.


Sign in / Sign up

Export Citation Format

Share Document