Ontogenic regulation of spatial differentiation in the crypt-villus axis of normal and isografted small intestine

1995 ◽  
Vol 269 (4) ◽  
pp. G500-G511 ◽  
Author(s):  
E. D. Gutierrez ◽  
K. J. Grapperhaus ◽  
D. C. Rubin

Despite rapid proliferation, the mammalian intestinal epithelium maintains precise spatial differentiation from crypt to villus tip and from duodenum to colon. During perinatal life, the rodent gut undergoes a dramatic morphogenesis, resulting in formation of the crypt-villus and duodenal-colonic axes. The ontogeny of regional differences in gene expression in the emerging vertical axis has not been well described. We used the liver fatty acid binding protein (L-FABP) and apolipoprotein (apo) AIV genes as markers of neonatal enterocytic differentiation. In situ hybridization analyses revealed that both genes exhibit unique spatial patterns of expression along the jejunal crypt-villus axis during ontogeny, characterized by increased cellular mRNA levels in villus base enterocytes. To examine the requirement for a normal luminal environment to generate these precise patterns of cellular gene expression, we employed intestinal isograft techniques. Fetal intestines were implanted as early as embryonic day 12. Appropriate expression of the apo AIV and L-FABP genes was recapitulated during villus morphogenesis in fetal life. However, spatial patterns of gene expression in the isografted postnatal cryptvillus axis were altered. The preferential accumulation of L-FABP and apo AIV mRNA in villus base enterocytes was never observed in isografts. These results suggest that a “basal” differentiation program is encoded in fetal endoderm and mesenchyme, yet extracellular substances contained in the lumen or extrinsic to the intestine play an important modulatory role in generating spatial differentiation during ontogeny.

Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 611-621 ◽  
Author(s):  
S.K. De ◽  
M.T. McMaster ◽  
S.K. Dey ◽  
G.K. Andrews

Oligodeoxyribonucleotide excess solution hybridization, Northern blot and in situ hybridization were used to analyze metallothionein gene expression in mouse decidua and placentae during gestation. Metallothionein (MT) -I and -II mRNA levels were constitutively elevated, 11- and 13-fold, respectively, relative to the adult liver, in the deciduum (D8), and decreased coordinately about 6-fold during the period of development when the deciduum is replaced by the developing placenta (D10-16). Coincident with this decline, levels of MT mRNA increased dramatically in the visceral yolk sac endoderm. In situ hybridization established that MT-I mRNA was present at low levels in the uterine luminal epithelium (D4), but was elevated at the site of embryo implantation exclusively in the primary decidual zone by D5, and then in the secondary decidual zone (D6-8). Although low levels of MT mRNA were detected in total placental RNA, in situ hybridization revealed constitutively high levels in the outer placental spongiotrophoblasts. Analysis of pulse-labeled proteins from decidua and placentae established that these tissues are active in the synthesis of MT. The constitutively high levels of MT mRNA in decidua were only slightly elevated following injection of cadmium (Cd) and/or zinc (Zn), whereas in placentae they increased several-fold. MT mRNA levels were equally high in decidua and experimentally induced deciduomata (D8) which establishes that decidual MT gene expression is not dependent on the presence of the embryo or some embryo-derived factor. Although the functional role of MT during development is speculative, these results establish the concept that, from the time of implantation to late in gestation, the mouse embryo is surrounded by cells, interposed between the maternal and embryonic environments, which actively express the MT genes. This suggests that MT plays an important role in the establishment and maintenance of normal pregnancy.


2000 ◽  
Vol 279 (4) ◽  
pp. R1239-R1250 ◽  
Author(s):  
Eric Glasgow ◽  
Takashi Murase ◽  
Bingjun Zhang ◽  
Joseph G. Verbalis ◽  
Harold Gainer

Magnocellular neurons of the hypothalamo-neurohypophysial system play a fundamental role in the maintenance of body homeostasis by secreting vasopressin and oxytocin in response to systemic osmotic perturbations. During chronic hyperosmolality, vasopressin and oxytocin mRNA levels increase twofold, whereas, during chronic hyposmolality, these mRNA levels decrease to 10–20% of that of normoosmolar control animals. To determine what other genes respond to these osmotic perturbations, we have analyzed gene expression during chronic hyper- versus hyponatremia. Thirty-seven cDNA clones were isolated by differentially screening cDNA libraries that were generated from supraoptic nucleus tissue punches from hyper- or hyponatremic rats. Further analysis of 12 of these cDNAs by in situ hybridization histochemistry confirmed that they are osmotically regulated. These cDNAs represent a variety of functional classes and include cytochrome oxidase, tubulin, Na+-K+-ATPase, spectrin, PEP-19, calmodulin, GTPase, DnaJ-like, clathrin-associated, synaptic glycoprotein, regulator of GTPase stimulation, and gene for oligodendrocyte lineage-myelin basic proteins. This analysis therefore suggests that adaptation to chronic osmotic stress results in global changes in gene expression in the magnocellular neurons of the supraoptic nucleus.


1995 ◽  
Vol 145 (2) ◽  
pp. 343-353 ◽  
Author(s):  
K Reiprich ◽  
E Mühlbauer ◽  
E Decuypere ◽  
R Grossmann

Abstract In this study both sexes of two strains of chicken with genetically different growth potentials (broiler- and laying-type) were used to investigate growth hormone (GH) gene expression during posthatch development from day 7 (D7) to D56 by using the in situ hybridization technique and Northern analysis. In pituitaries of both strains a high GH mRNA signal was found as early as D7 by in situ hybridization, showing clear differences in the pattern of gene expression between the two strains. By Northern hybridization sex differences were detectable in all age groups of broilers, with higher levels throughout in males. In layers, however, females showed consistently higher levels compared with males until D21. While signal intensities decreased in the broiler strain during the investigation period, the layer-type strain seemed to express GH mRNA more continuously, reaching significantly (P<0·01) higher GH mRNA levels than broilers at D56. Plasma GH concentrations ran parallel to GH mRNA in early stages but showed a peak earlier at D14 and decreased after D35 in both sexes and strains. Determination of growth as weekly weight gains, however, proved that a period of rapid growth (at a higher level in both sexes of the broiler strain) at D7 was followed by a strong decrease from D14 to D21. A plateau of constant growth was reached until the end of the observation period with similar rates in both strains and sexes. Analysis of plasma thyroid hormones tri-iodothyronine/thyroxine (T3/T4) showed an increase in T3 concentrations in both strains and sexes in early stages and a decrease thereafter. No clear strain differences were measured. T4 plasma concentrations increased from D7 to D14 in broilers and D21 in layers when a plateau was reached. From the results we conclude that generally there is a good correlation between GH mRNA and plasma GH concentrations in both strains investigated. Neither parameter, however, is coupled directly with the growth rate. Thus the early rapid growth corresponds to relatively low levels of GH mRNA and plasma GH concentrations, but high T3 levels. Later, decreased growth rates are linked to increasing amounts of GH mRNA as well as increasing plasma GH concentrations in both layers and broilers. Towards the end of the observation period there was a strain divergence visible with increased amounts of GH mRNA in layers but a strong reduction in broilers. Moreover, plasma GH concentrations decreased more slowly in layers than in broilers. Journal of Endocrinology (1995) 145, 343–353


2014 ◽  
Vol 307 (6) ◽  
pp. R755-R768 ◽  
Author(s):  
Quan Jiang ◽  
Anderson O. L. Wong

Somatostain (SS) is known to inhibit growth hormone (GH) and prolactin (PRL) secretion. Somatolactin (SL) is a member of the GH/PRL family, but its regulation by goldfish brain somatostatin-28 (gbSS-28) has not been examined. To this end, the structural identity of goldfish SLα was established by 5′/3′-rapid amplification of cDNA ends. As revealed by in situ hybridization and immunohistochemical staining, the expression of SL isoforms was detected in pituitary cells located in the neurointermediate lobe (NIL). The transcripts of goldfish SS receptor 5a (Sst5a) but not Sst1b, Sst2, or Sst3a were detected in the goldfish NIL cells by RT-PCR. In goldfish pituitary cells, gbSS-28 not only had an inhibitory effect on basal SLα and SLβ mRNA levels but also could abolish insulin-like growth factor-stimulated SL gene expression. In primary cultures of goldfish NIL cells, gbSS-28 reduced forskolin-stimulated total cAMP production. With the use of a pharmacological approach, the adenylate cyclase (AC)/cAMP and phospholipase C (PLC)/inositol trisphosphate (IP3)/protein kinase C (PKC) cascades were shown to be involved in gbSS-28-inhibited SLα mRNA expression. Similar postreceptor signaling cascades were also observed for gbSS-28-reduced SLβ mRNA expression, except that PKC coupling to PLC was not involved. These results provide evidence that gbSS-28 can inhibit SLα and SLβ gene expression at the goldfish pituitary level via Sst5 through differential coupling of AC/cAMP and PLC/IP3/PKC cascades.


2005 ◽  
Vol 289 (6) ◽  
pp. G1108-G1114 ◽  
Author(s):  
Adrian R. West ◽  
Phillip S. Oates

Disaccharidases are important digestive enzymes whose activities can be reduced by iron deficiency. We hypothesise that this is due to reduced gene expression, either by impairment to enterocyte differentiation or by iron-sensitive mechanisms that regulate mRNA levels in enterocytes. Iron-deficient Wistar rats were generated by dietary means. The enzyme activities and kinetics of sucrase and lactase were tested as well as the activity of intestinal alkaline phosphatase (IAP)-II because it is unrelated to carbohydrate digestion. mRNA levels of β-actin, sucrase, lactase, and the associated transcription factors pancreatic duodenal homeobox (PDX)-1, caudal-related homeobox (CDX)-2, GATA-binding protein (GATA)-4, and hepatocyte nuclear factor (HNF)-1 were measured by real-time PCR. Spatial patterns of protein and gene expression were assessed by immunofluorescence and in situ hybridization, respectively. It was found that iron-deficient rats had significantly lower sucrase (19.5% lower) and lactase (56.8% lower) but not IAP-II activity than control rats. Kinetic properties of both enzymes remained unchanged from controls, suggesting a decrease in the quantity of enzyme present. Sucrase and lactase mRNA levels were reduced by 44.5% and 67.9%, respectively, by iron deficiency, suggesting that enzyme activity is controlled primarily by gene expression. Iron deficiency did not affect the pattern of protein and gene expression along the crypt to villus axis. Expression of PDX-1, a repressor of sucrase and lactase promoters, was 4.5-fold higher in iron deficiency, whereas CDX-2, GATA-4, and HNF-1 levels were not significantly different. These data suggest that decreases in sucrase and lactase activities result from a reduction in gene expression, following from increased levels of the transcriptional repressor PDX-1.


Reproduction ◽  
2009 ◽  
Vol 137 (1) ◽  
pp. 129-140 ◽  
Author(s):  
J L Crawford ◽  
D A Heath ◽  
L J Haydon ◽  
B P Thomson ◽  
D C Eckery

In eutherian mammals, the gonadotrophins (LH and FSH) are synthesized and stored in gonadotroph cells under the regulation of multiple mechanisms including GnRH. Very little is known about the regulation of gonadotrophin secretion and storage in pituitary glands of marsupials. This study revealed, using quantitative PCR and heterologous RIA techniques, thatLHBmRNA expression levels remained constant over the oestrous cycle, regardless of the presence of a preovulatory LH surge, which is characteristic of a hormone secreted under regulation. Our sampling regime was unable to detect pulses of LH during the follicular phase, althoughGNRHRmRNA levels had increased at this time. Pulses of LH were, however, detected in the luteal phase of cycling females, in anoestrus females and in males. There was a positive correlation between gene expression ofFSHBand plasma levels of FSH at different stages of the oestrous cycle and no pulses of FSH were detected at any time; all characteristics of a hormone secreted via the constitutive pathway. Usingin situhybridisation and immunohistochemistry methods, we determined that mRNA expression ofLHBandFSHB, and protein storage of gonadotrophins exhibited a similar pattern of localisation within the pituitary gland. Additionally, sexual dimorphism of gonadotroph populations was evident. In summary, these findings are similar to that reported in eutherians and considering that marsupial evolution diverged from eutherians over 100 million years ago suggests that the regulation of gonadotrophins is highly conserved indeed.


1993 ◽  
Vol 292 (3) ◽  
pp. 873-876 ◽  
Author(s):  
B Cousin ◽  
L Casteilla ◽  
C Dani ◽  
P Muzzin ◽  
J P Revelli ◽  
...  

We have shown previously the presence of brown adipocytes among white fat pads, and proposed the existence of a spectrum of adipose depots according to the abundance of brown fat cells [Cousin, Cinti, Morroni, Raimbault, Ricquier, Pénicaud and Casteilla (1992) J. Cell Sci. 103, 931-942]. In this study, we tried to characterize this spectrum better. We determined in several adipose depots (i) the richness of pre-adipose cells, as assessed by A2COL6 mRNA levels; (ii) whether a fat pad was characterized by a pattern of mRNA expression; (iii) whether this pattern was close related to abundance of brown adipocytes, and (iv) whether the regulation of this pattern by catecholamines under cold exposure or beta-agonist treatment was similar in the different pads. This was achieved by studying proteins involved in glucose and lipid metabolism such as insulin-sensitive glucose transporter (GLUT4), fatty acid synthase, lipoprotein lipase and fatty acid binding protein aP2, as well as beta 3-adrenergic-receptor expression. Among white adipose depots, the periovarian fat pad was characterized by the highest content of pre-adipocytes and of brown adipocytes, and inguinal fat by the highest lipogenic activity potential. There was no close correlation between beta 3-adrenergic-receptor expression and brown adipocyte content in the tissues, as measured by the degree of uncoupling protein (UCP) gene expression. However, in pads expressing UCP mRNA, mRNA levels of beta 3-adrenergic receptor and other markers were increased in parallel. Under cold exposure or beta 3-agonist treatment, a specific up-regulation of GLUT4 expression was observed in interscapular brown adipose tissue. The regional difference described in this study, could participate in preferential fat-pad growth under physiological conditions as well as in pathological situations.


1994 ◽  
Vol 267 (4) ◽  
pp. F679-F687 ◽  
Author(s):  
C. Pupilli ◽  
M. Brunori ◽  
N. Misciglia ◽  
C. Selli ◽  
L. Ianni ◽  
...  

To investigate the presence and the distribution of preproendothelin-1 (prepro-ET-1) mRNA in human kidney, eight human kidneys obtained at surgery from patients affected by localized renal tumors were studied. Northern blot analysis using a human prepro-ET-1 cDNA probe labeled with 32P showed the presence of a single band of approximately 2.3 kb that was present both in the renal cortex and medulla of all the kidneys studied. Densitometric analysis of hybridization signals demonstrated that prepro-ET-1 mRNA levels in the renal medulla were 2.2-fold higher than those in the renal cortex. The distribution of prepro-ET-1 mRNA in human kidney was investigated by in situ hybridization using a human prepro-ET-1 RNA probe labeled with 35S. The greatest density of prepro-ET-1 mRNA was observed in the renal medulla, where hybridization signal was demonstrated in vasa recta bundles and capillaries and in collecting ducts. By combining in situ hybridization with immunohistochemical detection of von Willebrand factor, we demonstrated that 93 +/- 2.5% of nontubular medullary cells containing prepro-ET-1 mRNA were endothelial cells. In the cortex, prepro-ET-1 mRNA was localized in the endothelial layer of arcuate and interlobular arteries and veins and in the endothelial cells of afferent arterioles. The results of the present study demonstrate that ET-1 gene expression is present in vascular and tubular structures of the human kidney. It is possible that ET-1 synthesized locally in the human kidney represents a local system affecting renal hemodynamics and functions through paracrine and/or autocrine actions on different renal structures.


Endocrinology ◽  
2009 ◽  
Vol 150 (4) ◽  
pp. 1826-1833 ◽  
Author(s):  
T. J. Stevenson ◽  
K. S. Lynch ◽  
P. Lamba ◽  
G. F. Ball ◽  
D. J. Bernard

Temperate zone animals exhibit seasonal variation in reproductive physiology. In most cases, seasonal changes in reproductive states are regulated by changes in GnRH1 secretion, rather than synthesis, from the preoptic area (POA)/anterior hypothalamus. An important exception occurs in some songbirds that become photorefractory to the stimulatory effects of long days and show profound decreases in brain GnRH1 protein content. Whether this decline reflects changes in gene expression is unknown because of past failures to measure GNRH1 mRNA levels, due in large part to the absence of available GNRH1 gene sequence in this taxon. Here, we report the first cloning of GNRH1 cDNAs in two songbirds: European starlings and zebra finches. Consistent with the size of the prepro-hormone in other avian and non-avian species, the open-reading frames predict proteins of 91 and 92 amino acids, respectively. Whereas the decapeptide in both species is perfectly conserved with chicken GnRH1, the amino acid identity in the signal peptide and GNRH associated peptide subdomains are significantly less well conserved. At the nucleotide level, the starling and zebra finch coding sequences are approximately 88% identical to each other but only approximately 70% identical to chicken GNRH1. In situ hybridization using radiolabeled cRNA probes demonstrated GNRH1 mRNA expression primarily in the POA, consistent with previous studies on the distribution of the GnRH1-immunoreactive cell bodies. Furthermore, we provide evidence for photoperiod-dependent regulation of GNRH1 mRNA in male starlings. Declines in GNRH1 mRNA levels occur in parallel with testicular involution. Thus, photorefractoriness is associated with decreases in GNRH1 gene expression in the medial POA.


1994 ◽  
Vol 5 (2) ◽  
pp. 103-114 ◽  
Author(s):  
Yuan Qing Jiang ◽  
Judith Pickett ◽  
Monica M. Oblinger

To compare the long-term recovery of gene expression in dorsal root ganglion (DRG) neurons under conditions of regeneration vs. non-regeneration, Northern blotting andin situhybridization were used to assess steady-state neurofilament (NF) and beta tubulinmRNA levels 12 weeks following axonal injury. Adult male rats sustained either a crush lesion of the mid-sciatic nerve (regeneration occurs), or a cut lesion of the sciatic nerve combined with ligation of the proximal nerve stump and removal of a large segment of the distal nerve (regeneration does not occur). In the latter case, neuroma formation physically prevented axonal regeneration. Results of Northern blotting of total RNA obtained from the DRG indicated that NF-Land NF-ΜmRNA levels had largely returned to control levels at 12 weeks following crush axotomy but were still substantially depressed following cut/ligation injury of the sciatic nerve at that time.in situhybridization studies indicated that both crush and cut/ligation axotomy resulted in significantly lower NF-LmRNA levels in large-sized(>1000  μm2)DRG neurons at 12 weeks post-axotomy. Discrepancies in the conclusions from Northern blotting andin situhybridization experiments were also noted in the case of tubulin mRNA changes at long intervals after axotomy.in situhybridization data derived from the large-sized DRG neurons using a coding regionβ-tubulin cDNA (which recognizes bothβΙΙandβΙΙΙmRNAs) showed complete recovery ofβ-tubulin mRNA levels in surviving, large-sized DRG neurons after crush axotomy, but significantly elevated tubulin mRNA levels in surviving large DRG cells at 12 weeks after cut/ligation axotomy. In contrast, Northern blotting results indicated thatβΙΙ-tubulin mRNA levels in the crush axotomy condition remained elevated relative to control while they were substantially lower than control in cut/ligation axotomy samples. Results from analysis ofβΙΙΙ-tubulin mRNA changes were not conclusive. The lack of complete correspondence in the results from the two different methods of analysis of mRNA changes (blotting vs.in situ) is likely to be due to selective loss of large-sized DRG neurons in the long-standing cut/ligation injury condition. This would influence results from blotting data, where RNA is derived from the DRG as a whole, more so thanin situhybridization experiments which specifically focus on the surviving largesized neurons. Overall, data from these experiments indicate that altered patterns of gene expression remain in the DRG for long intervals after axonal injury, whether or not axonal regeneration has been successful. However, recovery of “normal8221; patterns of cytoskeletal gene expression in the DRG is considerably more complete after crush injury than after cut/ligation injury.


Sign in / Sign up

Export Citation Format

Share Document