Gene expression in the rat supraoptic nucleus induced by chronic hyperosmolality versus hyposmolality

2000 ◽  
Vol 279 (4) ◽  
pp. R1239-R1250 ◽  
Author(s):  
Eric Glasgow ◽  
Takashi Murase ◽  
Bingjun Zhang ◽  
Joseph G. Verbalis ◽  
Harold Gainer

Magnocellular neurons of the hypothalamo-neurohypophysial system play a fundamental role in the maintenance of body homeostasis by secreting vasopressin and oxytocin in response to systemic osmotic perturbations. During chronic hyperosmolality, vasopressin and oxytocin mRNA levels increase twofold, whereas, during chronic hyposmolality, these mRNA levels decrease to 10–20% of that of normoosmolar control animals. To determine what other genes respond to these osmotic perturbations, we have analyzed gene expression during chronic hyper- versus hyponatremia. Thirty-seven cDNA clones were isolated by differentially screening cDNA libraries that were generated from supraoptic nucleus tissue punches from hyper- or hyponatremic rats. Further analysis of 12 of these cDNAs by in situ hybridization histochemistry confirmed that they are osmotically regulated. These cDNAs represent a variety of functional classes and include cytochrome oxidase, tubulin, Na+-K+-ATPase, spectrin, PEP-19, calmodulin, GTPase, DnaJ-like, clathrin-associated, synaptic glycoprotein, regulator of GTPase stimulation, and gene for oligodendrocyte lineage-myelin basic proteins. This analysis therefore suggests that adaptation to chronic osmotic stress results in global changes in gene expression in the magnocellular neurons of the supraoptic nucleus.

1993 ◽  
Vol 11 (2) ◽  
pp. 181-189 ◽  
Author(s):  
S G Matthews ◽  
R F Parrott ◽  
D J S Sirinathsinghji

ABSTRACT Changes in neuropeptide gene expression in the hypothalami of sheep subjected to psychological stress (isolation, 1 h; n=3) or dehydration (48 h; n=3) were examined using in-situ hybridization histochemistry. Compared with non-stressed euhydrated control animals (n=3), isolation induced significant accumulation of mRNA for corticotrophin-releasing hormone, pro-enkephalin and pro-dynorphin (DYN) in the paraventricular nucleus (PVN), but no change in mRNA content within the supraoptic nucleus (SON). By contrast, dehydration significantly increased DYN mRNA in the magnocellular neurones of the PVN and SON. However, neither isolation nor dehydration altered the expression of mRNA for vasopressin (AVP) in either the PVN or the SON. These results indicate that in the ovine hypothalamus (1) stress represents a powerful stimulus to co-ordinated neuropeptide synthesis and (2) expression of DYN mRNA and AVP mRNA may be independently regulated during changes in plasma osmolality.


1988 ◽  
Vol 8 (1) ◽  
pp. 10-16
Author(s):  
C K Singleton ◽  
S S Manning ◽  
Y Feng

Several genes which are deactivated on the initiation of development of Dictyostelium discoideum were identified by differential screening of various cDNA libraries. These genes have in common a decrease in the steady-state levels of their corresponding mRNAs on the onset of development and as development proceeds. When development was carried out in the absence of protein synthesis by inhibition with cycloheximide, the decrease in mRNA levels for most genes (V genes) was normal or slightly accelerated. For about 5% of the genes (H genes), however, cycloheximide caused an apparent induction of expression, as revealed by a slight or dramatic increase in mRNA levels, instead of the normal decrease. This effect was due to inhibition of protein synthesis and not to cycloheximide per se. The induction was found to be due to an enhancement of the transcription rate; normal rates of transcription for the H genes were dependent on continued protein synthesis during vegetative growth and development. Thus, two general regulatory classes exist for deactivation of gene expression on initiation of development, one of which is dependent on and one of which is independent of protein synthesis. Analysis of expression of these genes in mutant strains which are aggregation deficient allowed the classes to be subdivided further. Taken together, these characterizations allow several distinct regulatory mechanisms to be identified that are involved in the deactivation of gene expression on the onset of development in D. discoideum.


Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 611-621 ◽  
Author(s):  
S.K. De ◽  
M.T. McMaster ◽  
S.K. Dey ◽  
G.K. Andrews

Oligodeoxyribonucleotide excess solution hybridization, Northern blot and in situ hybridization were used to analyze metallothionein gene expression in mouse decidua and placentae during gestation. Metallothionein (MT) -I and -II mRNA levels were constitutively elevated, 11- and 13-fold, respectively, relative to the adult liver, in the deciduum (D8), and decreased coordinately about 6-fold during the period of development when the deciduum is replaced by the developing placenta (D10-16). Coincident with this decline, levels of MT mRNA increased dramatically in the visceral yolk sac endoderm. In situ hybridization established that MT-I mRNA was present at low levels in the uterine luminal epithelium (D4), but was elevated at the site of embryo implantation exclusively in the primary decidual zone by D5, and then in the secondary decidual zone (D6-8). Although low levels of MT mRNA were detected in total placental RNA, in situ hybridization revealed constitutively high levels in the outer placental spongiotrophoblasts. Analysis of pulse-labeled proteins from decidua and placentae established that these tissues are active in the synthesis of MT. The constitutively high levels of MT mRNA in decidua were only slightly elevated following injection of cadmium (Cd) and/or zinc (Zn), whereas in placentae they increased several-fold. MT mRNA levels were equally high in decidua and experimentally induced deciduomata (D8) which establishes that decidual MT gene expression is not dependent on the presence of the embryo or some embryo-derived factor. Although the functional role of MT during development is speculative, these results establish the concept that, from the time of implantation to late in gestation, the mouse embryo is surrounded by cells, interposed between the maternal and embryonic environments, which actively express the MT genes. This suggests that MT plays an important role in the establishment and maintenance of normal pregnancy.


2006 ◽  
Vol 24 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Mohamed T. Ghorbel ◽  
Greig Sharman ◽  
Charles Hindmarch ◽  
Kevin G. Becker ◽  
Tanya Barrett ◽  
...  

The magnocellular neurons (MCNs) of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus are the principal site of biosynthesis of prepropeptide precursor of the antidiuretic hormone vasopressin (VP). This precursor is processed during anterograde axonal transportation to terminals in the posterior pituitary gland, where biologically active VP is stored until release into the general circulation in response to physiological activation of the SON by osmotic cues. By binding to V2-type receptors located in the kidney, VP decreases the amount of water lost in urine. Osmotic activation of the SON is accompanied by a dramatic morphological and functional remodeling. We have sought to understand the mechanistic basis of this plasticity in terms of the differential expression of genes. To identify such genes, we adopted an unbiased global approach based on suppressive subtractive hybridization-polymerase chain reaction (SSH-PCR) Using this method, we generated libraries of clones putatively differentially expressed in control vs. dehydrated SON. To rapidly screen these libraries, 1,152 clones were subjected to microarray analysis, resulting in the identification of 459 differentially expressed transcripts. cDNA clones corresponding to 56 of these RNAs were sequenced, revealing many of them to be novel expressed sequence tags (ESTs). Four transcripts were shown by in situ hybridization (ISH) to be significantly up- or downregulated in the SON after dehydration. These genes may represent novel effectors or mediators of SON physiological remodeling.


Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1357-1363 ◽  
Author(s):  
Csaba Fekete ◽  
Praful S. Singru ◽  
Sumit Sarkar ◽  
William M. Rand ◽  
Ronald M. Lechan

The nonthyroidal illness syndrome associated with fasting, infection, and chronic illness is characterized by low thyroid hormone levels and low or inappropriately normal TSH levels in circulating blood and reduced synthesis of TRH in hypophysiotropic neurons residing in the hypothalamic paraventricular nucleus (PVN). To test the hypothesis that ascending brainstem pathways are involved in mediation of bacterial lipopolysaccharide (LPS)-induced suppression of TRH mRNA in the PVN, we unilaterally transected brainstem pathways to the PVN and determined the effects of LPS on TRH gene expression and, as a control, on CRH gene expression in hypophysiotropic neurons using semiquantitative in situ hybridization histochemistry. The efficacy of the transection was determined by immunocytochemical detection of ascending adrenergic pathways in the PVN. In vehicle-treated animals, CRH mRNA in the PVN showed a significant reduction on the transected side compared with the intact side, whereas a significant increase in TRH mRNA was observed on the transected side compared with the intact side. After LPS administration (250 μg/100 g body weight), a dramatic increase in CRH mRNA was observed on the intact side, and a significantly lesser increase was found on the transected side. In contrast, LPS treatment resulted in reduction in TRH mRNA on the transected side compared with the intact side and a significant reduction in TRH mRNA on the transected side compared with vehicle-treated animals. These studies confirm an important role of ascending brainstem projections in LPS-induced activation of CRH gene expression, but indicate that they do not mediate the effect of LPS to inhibit hypophysiotropic TRH gene expression.


1995 ◽  
Vol 145 (2) ◽  
pp. 343-353 ◽  
Author(s):  
K Reiprich ◽  
E Mühlbauer ◽  
E Decuypere ◽  
R Grossmann

Abstract In this study both sexes of two strains of chicken with genetically different growth potentials (broiler- and laying-type) were used to investigate growth hormone (GH) gene expression during posthatch development from day 7 (D7) to D56 by using the in situ hybridization technique and Northern analysis. In pituitaries of both strains a high GH mRNA signal was found as early as D7 by in situ hybridization, showing clear differences in the pattern of gene expression between the two strains. By Northern hybridization sex differences were detectable in all age groups of broilers, with higher levels throughout in males. In layers, however, females showed consistently higher levels compared with males until D21. While signal intensities decreased in the broiler strain during the investigation period, the layer-type strain seemed to express GH mRNA more continuously, reaching significantly (P<0·01) higher GH mRNA levels than broilers at D56. Plasma GH concentrations ran parallel to GH mRNA in early stages but showed a peak earlier at D14 and decreased after D35 in both sexes and strains. Determination of growth as weekly weight gains, however, proved that a period of rapid growth (at a higher level in both sexes of the broiler strain) at D7 was followed by a strong decrease from D14 to D21. A plateau of constant growth was reached until the end of the observation period with similar rates in both strains and sexes. Analysis of plasma thyroid hormones tri-iodothyronine/thyroxine (T3/T4) showed an increase in T3 concentrations in both strains and sexes in early stages and a decrease thereafter. No clear strain differences were measured. T4 plasma concentrations increased from D7 to D14 in broilers and D21 in layers when a plateau was reached. From the results we conclude that generally there is a good correlation between GH mRNA and plasma GH concentrations in both strains investigated. Neither parameter, however, is coupled directly with the growth rate. Thus the early rapid growth corresponds to relatively low levels of GH mRNA and plasma GH concentrations, but high T3 levels. Later, decreased growth rates are linked to increasing amounts of GH mRNA as well as increasing plasma GH concentrations in both layers and broilers. Towards the end of the observation period there was a strain divergence visible with increased amounts of GH mRNA in layers but a strong reduction in broilers. Moreover, plasma GH concentrations decreased more slowly in layers than in broilers. Journal of Endocrinology (1995) 145, 343–353


2014 ◽  
Vol 307 (6) ◽  
pp. R755-R768 ◽  
Author(s):  
Quan Jiang ◽  
Anderson O. L. Wong

Somatostain (SS) is known to inhibit growth hormone (GH) and prolactin (PRL) secretion. Somatolactin (SL) is a member of the GH/PRL family, but its regulation by goldfish brain somatostatin-28 (gbSS-28) has not been examined. To this end, the structural identity of goldfish SLα was established by 5′/3′-rapid amplification of cDNA ends. As revealed by in situ hybridization and immunohistochemical staining, the expression of SL isoforms was detected in pituitary cells located in the neurointermediate lobe (NIL). The transcripts of goldfish SS receptor 5a (Sst5a) but not Sst1b, Sst2, or Sst3a were detected in the goldfish NIL cells by RT-PCR. In goldfish pituitary cells, gbSS-28 not only had an inhibitory effect on basal SLα and SLβ mRNA levels but also could abolish insulin-like growth factor-stimulated SL gene expression. In primary cultures of goldfish NIL cells, gbSS-28 reduced forskolin-stimulated total cAMP production. With the use of a pharmacological approach, the adenylate cyclase (AC)/cAMP and phospholipase C (PLC)/inositol trisphosphate (IP3)/protein kinase C (PKC) cascades were shown to be involved in gbSS-28-inhibited SLα mRNA expression. Similar postreceptor signaling cascades were also observed for gbSS-28-reduced SLβ mRNA expression, except that PKC coupling to PLC was not involved. These results provide evidence that gbSS-28 can inhibit SLα and SLβ gene expression at the goldfish pituitary level via Sst5 through differential coupling of AC/cAMP and PLC/IP3/PKC cascades.


Sign in / Sign up

Export Citation Format

Share Document