Potentiation to vasodilators by nitric oxide synthase blockade in superior mesenteric but not hepatic artery

1997 ◽  
Vol 272 (3) ◽  
pp. G507-G514 ◽  
Author(s):  
M. P. Macedo ◽  
W. W. Lautt

Our objective was to determine the vasodilator effect of adenosine and isoproterenol on the hepatic artery (HA) and superior mesenteric artery (SMA) before and after blockade of nitric oxide (NO) production to evaluate the possibility of organ specificity. Vascular circuits supplied blood flow to the liver or intestine in cats under pentobarbital sodium anesthesia. The NO synthase (NOS) antagonist N(G)-nitro-L-arginine methyl ester (L-NAME; 2.5 mg/kg iv) increased arterial pressure from 106.4 +/- 7.6 to 141.4 +/- 8.1 mmHg and raised basal vascular tone in the SMA but not in the HA. The NOS substrate L-arginine (75 mg/kg) reversed these effects. The decrease in perfusion pressure in response to adenosine was 51.7 +/- 2.9, 135.2 +/- 6.1, and 16.7 +/- 2.4 mmHg, respectively, for control and after L-NAME and L-arginine. Isoproterenol was also potentiated in the SMA. Adenosine and isoproterenol were not potentiated in the HA by L-NAME. Potentiation did not occur when HA or SMA basal tone was elevated by norepinephrine. In conclusion, L-NAME increased basal tone for the SMA and potentiated the dilation induced by adenosine and isoproterenol in the SMA but not in the HA. This study provides evidence that there is a highly organ-specific compensatory mechanism in which the absence of NO promotes potentiation of other vasodilators.

2001 ◽  
Vol 280 (1) ◽  
pp. G32-G42 ◽  
Author(s):  
Ya-Ping Fan ◽  
Sushanta Chakder ◽  
Feng Gao ◽  
Satish Rattan

We examined the effect of endotoxin lipopolysaccharide (LPS) on the basal tone and on the effects of different stimuli and agonists and transcriptional and translational expression of nitric oxide (NO) synthase (NOS) isozymes in the lower esophageal sphincter (LES), pyloric sphincter (PS), and internal anal sphincter (IAS). NO release was also examined before and after LPS. LPS caused a dose-dependent fall in the basal tone and augmentation of the relaxation caused by nonadrenergic, noncholinergic (NANC) nerve stimulation in the LES and IAS. In the PS, LPS had no significant effect on the basal tone and caused an attenuation of the NANC relaxation and an augmentation of the contractile response of muscarinic agonist. Interestingly, the smooth muscle relaxation by atrial natriuretic factor was suppressed in the LES and IAS but not in the PS. These changes in the sphincteric function following LPS may be associated with increase in the inducible NOS (iNOS) expression since they were blocked by iNOS inhibitorl-canavanine. Augmentation of NANC relaxation in the LES and IAS smooth muscle by LPS may be due to the increased activity of neuronal NOS and NO production.


2003 ◽  
Vol 81 (10) ◽  
pp. 966-971 ◽  
Author(s):  
Paul A Dabisch ◽  
John T Liles ◽  
Philip J Kadowitz

Ephedrine is a mixed adrenergic agonist, stimulating both α- and β-adrenergic receptors. The effects of ephedrine use include increases in heart rate, cardiac output, peripheral resistance, and blood pressure, and its use is associated with serious cardiovascular events such as stroke, arrhythmias, and myocardial infarction. The vascular endothelium plays a fundamental role in the regulation of vascular tone by releasing vasoactive factors such as nitric oxide (NO). The loss of NO bioactivity, often referred to as endothelial dysfunction, is characterized by the loss of endothelium-dependent vasodilation and is thought to be a common pathway for cardiovascular events such as vasospasm, hypertension, and myocardial infarction. Since endothelial dysfunction is characterized by loss of NO activity, and since ephedrine and endothelial dysfunction may be associated with similar cardiovascular events, the current study was undertaken to determine the effect of inhibition of NO production on responses to ephedrine in the rat. A sodium nitroprusside (SNP) infusion procedure was used to restore baseline vascular parameters to pre-L-NAME levels, allowing for direct comparison of agonist responses before and after NOS inhibition. The results demonstrate that the vascular response to ephedrine in the rat is modulated by NO and that NO production in response to ephedrine may be secondary to β2-receptor stimulation.Key words: nitric oxide, ephedrine, endothelial dysfunction, L-NAME.


2000 ◽  
Vol 93 (6) ◽  
pp. 1446-1455 ◽  
Author(s):  
Yasser Sakawi ◽  
Margaret Tarpey ◽  
Yiu Fai Chen ◽  
David A. Calhoun ◽  
Michael G. Connor ◽  
...  

Background Recent evidence implicates nitric oxide (*NO) in the pathogenesis of preeclampsia. The authors tested the hypothesis that administration of low-dose endotoxin to pregnant rats mimics the signs of preeclampsia in humans and that *NO and *NO-derived species play a role in that animal model. Methods Endotoxin was infused at doses of 1, 2 and 10 microg/kg over 1 h to rats on day 14 of pregnancy. Mean arterial pressure, urinary protein, urinary and plasma nitrite plus nitrate (NO2- + NO3-) concentrations, and platelet count were measured before and after the endotoxin infusion. In another group of pregnant rats, the nitric oxide synthase inhibitor L-nitroarginine methyl ester (L-NAME) was administered in drinking water at a dose of 3 mg x kg(-1) x d(-1) starting on day 7 of pregnancy. Endotoxin was then infused at 10 microg/kg on day 14 of pregnancy. Kidneys and uteroplacental units were examined histologically and analyzed immunohistochemically for 3-nitrotyrosine. Results Endotoxin administration at doses of 2 and 10 microg/kg caused proteinuria and thrombocytopenia in pregnant rats, but did not result in hypertension. Urinary NO2- + NO3- concentration, reflective of tissue *NO production rates, was significantly elevated in pregnant rats that received endotoxin at 10 microg/kg. Ingestion of L-NAME caused hypertension. Tissues from pregnant rats treated with L-NAME, endotoxin at 10 microg/kg, and a combination of L-NAME and endotoxin had increased 3-nitrotyrosine immunoreactivity. Conclusion Nitric oxide either directly or through secondary species plays a significant role in the biochemical and physiologic changes that occur in a rodent model of endotoxin-induced injury.


2017 ◽  
Vol 68 (10) ◽  
pp. 2237-2242
Author(s):  
Germaine Savoiu Balint ◽  
Mihaiela Andoni ◽  
Ramona Amina Popovici ◽  
Laura Cristina Rusu ◽  
Ioana Citu ◽  
...  

Arterial endothelium produces a large ramge of active factors which are indispensable for modulation of vasomotor tone and maintenance of vascular wall integrity. From these factors, nitric oxide (NO), wich is released by the endothelial cells as a response to acetylcholine or adenosine action on specific receptors, plays an important role.NO is the result of oxidation process of L-arginine into L-citrulline, under the action of endothelial nitric oxide synthase (NOSe), wich is activated by intracelluar Ca2+ - calmodulin complex . Our study, performed in isolated organ bath, analyzed vascular reactivity of 12 guinea pigs� thoracic aorta rings. After phenylephrine -PHE 10-5 mol/L precontraction, the dose-effect curves for acetylcoline � ACH, adenosine 5� phosphate - 5�ADP and sodium nitroprusside � SNP were determined, before and after incubation of preparation, for 1 hour, with 5% hydrosoluble cigarettes smoke extract (CSE). Statistic analysis, performed with the use of t pair test and ANOVA parametric test, showed that incubation of vascular preparation with 5% CSE has increased the contractile response to PHE 10-5 mol/L (p[0.05), has reduced the endothelium-dependent relaxing response to ATP 10-5 mol/L (p[0.001) and 5�ADP 10-5 molo/L (p[0.001), but has not significantly modified the endothelium-independent relaxing response to SNP 10-5 mol/L (p=0.05). As a conclusion, vascular rings incubation with 5% CSE induced a decrease of endothelium NO synthesis under the action of AXH and 5�ADP, but did not change the smooth muscle fiber respomse in the presence of NO released by SNP.


2018 ◽  
Vol 16 (2) ◽  
pp. 194-199
Author(s):  
Wioletta Ratajczak-Wrona ◽  
Ewa Jablonska

Background: Polymorphonuclear neutrophils (PMNs) play a crucial role in the innate immune system’s response to microbial pathogens through the release of reactive nitrogen species, including Nitric Oxide (NO). </P><P> Methods: In neutrophils, NO is produced by the inducible Nitric Oxide Synthase (iNOS), which is regulated by various signaling pathways and transcription factors. N-nitrosodimethylamine (NDMA), a potential human carcinogen, affects immune cells. NDMA plays a major part in the growing incidence of cancers. Thanks to the increasing knowledge on the toxicological role of NDMA, the environmental factors that condition the exposure to this compound, especially its precursors- nitrates arouse wide concern. Results: In this article, we present a detailed summary of the molecular mechanisms of NDMA’s effect on the iNOS-dependent NO production in human neutrophils. Conclusion: This research contributes to a more complete understanding of the mechanisms that explain the changes that occur during nonspecific cellular responses to NDMA toxicity.


1998 ◽  
Vol 274 (1) ◽  
pp. C245-C252 ◽  
Author(s):  
Junsuke Igarashi ◽  
Masashi Nishida ◽  
Shiro Hoshida ◽  
Nobushige Yamashita ◽  
Hiroaki Kosaka ◽  
...  

The effects of nitric oxide (NO) produced by cardiac inducible NO synthase (iNOS) on myocardial injury after oxidative stress were examined. Interleukin-1β induced cultured rat neonatal cardiac myocytes to express iNOS. After induction of iNOS,l-arginine enhanced NO production in a concentration-dependent manner. Glutathione peroxidase (GPX) activity in myocytes was attenuated by elevated iNOS activity and by an NO donor, S-nitroso- N-acetyl-penicillamine (SNAP). Although NO production by iNOS did not induce myocardial injury, NO augmented release of lactate dehydrogenase from myocyte cultures after addition of H2O2(0.1 mM, 1 h). Inhibition of iNOS with Nω-nitro-l-arginine methyl ester ameliorated the effects of NO-enhancing treatments on myocardial injury and GPX activity. SNAP augmented the myocardial injury induced by H2O2. Inhibition of GPX activity with antisense oligodeoxyribonucleotide for GPX mRNA increased myocardial injury by H2O2. Results suggest that the induction of cardiac iNOS promotes myocardial injury due to oxidative stress via inactivation of the intrinsic antioxidant enzyme, GPX.


2018 ◽  
Vol 60 (No. 8) ◽  
pp. 359-366
Author(s):  
J. Li ◽  
B. Shi ◽  
S. Yan ◽  
L. Jin ◽  
Y. Guo ◽  
...  

The effects of chitosan on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) activity and gene expression in vivo or vitro were investigated in weaned piglets. In vivo, 180 weaned piglets were assigned to five dietary treatments with six replicates. The piglets were fed on a basal diet supplemented with 0 (control), 100, 500, 1000, and 2000 mg chitosan/kg feed, respectively. In vitro, the peripheral blood mononuclear cells (PBMCs) from a weaned piglet were cultured respectively with 0 (control), 40, 80, 160, and 320 &micro;g chitosan/ml medium. Results showed that serum NO concentrations on days 14 and 28 and iNOS activity on day 28 were quadratically improved with increasing chitosan dose (P &lt; 0.05). The iNOS mRNA expressions were linearly or quadratically enhanced in the duodenum on day 28, and were improved quadratically in the jejunum on days 14 and 28 and in the ileum on day 28 (P &lt; 0.01). In vitro, the NO concentrations, iNOS activity, and mRNA expression in unstimulated PBMCs were quadratically enhanced by chitosan, but the improvement of NO concentrations and iNOS activity by chitosan were markedly inhibited by N-(3-[aminomethyl] benzyl) acetamidine (1400w) (P&nbsp;&lt; 0.05). Moreover, the increase of NO concentrations, iNOS activity, and mRNA expression in PBMCs induced by lipopolysaccharide (LPS) were suppressed significantly by chitosan (P &lt; 0.05). The results indicated that the NO concentrations, iNOS activity, and mRNA expression in piglets were increased by feeding chitosan in a dose-dependent manner. In addition, chitosan improved the NO production in unstimulated PBMCs but inhibited its production in LPS-induced cells, which exerted bidirectional regulatory effects on the NO production via modulated iNOS activity and mRNA expression.


1994 ◽  
Vol 267 (1) ◽  
pp. R84-R88 ◽  
Author(s):  
M. Huang ◽  
M. L. Leblanc ◽  
R. L. Hester

The study tested the hypothesis that the increase in blood pressure and decrease in cardiac output after nitric oxide (NO) synthase inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) was partially mediated by a neurogenic mechanism. Rats were anesthetized with Inactin (thiobutabarbital), and a control blood pressure was measured for 30 min. Cardiac output and tissue flows were measured with radioactive microspheres. All measurements of pressure and flows were made before and after NO synthase inhibition (20 mg/kg L-NAME) in a group of control animals and in a second group of animals in which the autonomic nervous system was blocked by 20 mg/kg hexamethonium. In this group of animals, an intravenous infusion of norepinephrine (20-140 ng/min) was used to maintain normal blood pressure. L-NAME treatment resulted in a significant increase in mean arterial pressure in both groups. L-NAME treatment decreased cardiac output approximately 50% in both the intact and autonomic blocked animals (P < 0.05). Autonomic blockade alone had no effect on tissue flows. L-NAME treatment caused a significant decrease in renal, hepatic artery, stomach, intestinal, and testicular blood flow in both groups. These results demonstrate that the increase in blood pressure and decreases in cardiac output and tissue flows after L-NAME treatment are not dependent on a neurogenic mechanism.


2007 ◽  
Vol 292 (4) ◽  
pp. H1995-H2003 ◽  
Author(s):  
Zuo-Hui Shao ◽  
Wei-Tien Chang ◽  
Kim Chai Chan ◽  
Kim R. Wojcik ◽  
Chin-Wang Hsu ◽  
...  

Optimal timing of therapeutic hypothermia for cardiac ischemia is unknown. Our prior work suggests that ischemia with rapid reperfusion (I/R) in cardiomyocytes can be more damaging than prolonged ischemia alone. Also, these cardiomyocytes demonstrate protein kinase C (PKC) activation and nitric oxide (NO) signaling that confer protection against I/R injury. Thus we hypothesized that hypothermia will protect most using extended ischemia and early reperfusion cooling and is mediated via PKC and NO synthase (NOS). Chick cardiomyocytes were exposed to an established model of 1-h ischemia/3-h reperfusion, and the same field of initially contracting cells was monitored for viability and NO generation. Normothermic I/R resulted in 49.7 ± 3.4% cell death. Hypothermia induction to 25°C was most protective (14.3 ± 0.6% death, P < 0.001 vs. I/R control) when instituted during extended ischemia and early reperfusion, compared with induction after reperfusion (22.4 ± 2.9% death). Protection was completely lost if onset of cooling was delayed by 15 min of reperfusion (45.0 ± 8.2% death). Extended ischemia/early reperfusion cooling was associated with increased and sustained NO generation at reperfusion and decreased caspase-3 activation. The NOS inhibitor Nω-nitro-l-arginine methyl ester (200 μM) reversed these changes and abrogated hypothermia protection. In addition, the PKCε inhibitor myr-PKCε v1-2 (5 μM) also reversed NO production and hypothermia protection. In conclusion, therapeutic hypothermia initiated during extended ischemia/early reperfusion optimally protects cardiomyocytes from I/R injury. Such protection appears to be mediated by increased NO generation via activation of protein kinase Cε; nitric oxide synthase.


2008 ◽  
Vol 294 (3) ◽  
pp. L582-L591 ◽  
Author(s):  
Neetu Sud ◽  
Stephen Wedgwood ◽  
Stephen M. Black

In this study, we explore the roles of the delta isoform of PKC (PKCδ) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCδ with either rottlerin or with the peptide, δV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCδ inhibition using either rottlerin or the overexpression of a dominant negative PKCδ mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCδ inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCδ is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCδ-mediated Akt activation and NO generation in maintaining eNOS expression.


Sign in / Sign up

Export Citation Format

Share Document