Liver regeneration is transiently impaired in urokinase-deficient mice

1998 ◽  
Vol 275 (6) ◽  
pp. G1472-G1479 ◽  
Author(s):  
Heather T. Roselli ◽  
Ming Su ◽  
Kay Washington ◽  
David M. Kerins ◽  
Douglas E. Vaughan ◽  
...  

To test the hypothesis that urokinase-type plasminogen activator (uPA) plays an important role in liver regeneration in vivo, partial hepatectomy was performed on wild-type and uPA-deficient (uPA−/−) mice. Mice were studied at 24, 44, and 96 h and at 8 days and 4 wk post-partial hepatectomy for evidence of regeneration, as measured by mitotic indexes and [3H]thymidine incorporation. In wild-type mice, thymidine incorporation peaked at 44 h and this index was reduced by 47% in uPA−/− mice ( P= 0.02). By 8 days, however, liver mass was comparable in both groups. Histological analysis revealed the presence of focal areas of fibrin deposition and cellular loss by 24 h that were more severe and prevalent in uPA−/− mice than in wild-type mice (62 and 23%, respectively; χ2 = 3.939, P = 0.047). In contrast, regeneration was not impaired in uPA receptor (uPAR)-deficient mice at 24 and 44 h. Taken together, these data indicate that uPA, independent of its interaction with the uPAR, plays an important role in liver regeneration in vivo.

2009 ◽  
Vol 102 (12) ◽  
pp. 1212-1218 ◽  
Author(s):  
Xufang Bai ◽  
Jeffrey Weitz ◽  
Peter Gross

SummaryFibrin is an integral component of arterial thrombi. Using a mouse model of arteriolar thrombosis, high-speed fluorescence microscopy reveals that, within minutes, the fibrin content of thrombi rapidly increases and then decreases.The decrease in fibrin coincides with leukocyte binding to the thrombi, a process mediated by the interaction of leukocyte P-selectin glycoprotein ligand-1 (PSGL-1) with P-selectin on the surface of activated platelets. Because leukocytes possess urokinase-type plasminogen activator (uPA) activity,we used mice deficient in uPA or the uPA receptor (uPAR) to explore the contribution of leukocyte associated uPA to the loss of fibrin from these thrombi. Fibrin loss in both uPA-deficient mice and uPAR-deficient mice was reduced compared with that in wild-type controls.Transfusion of leukocytes from wild-type mice into uPAR-deficient mice restored fibrin loss to levels similar to that in wild-type mice. In contrast, transfusion of leukocytes from mice deficient in uPAR or PSGL-1 did not enhance fibrin loss. Thus, fibrin loss from microarteriolar thrombi is mediated, at least in part, by leukocyte-associated uPA in a process that requires leukocyte uPAR and PSGL-1.


Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
Frederic Lluı́s ◽  
Josep Roma ◽  
Mònica Suelves ◽  
Maribel Parra ◽  
Gloria Aniorte ◽  
...  

Plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are extracellular proteases involved in various tissue remodeling processes. A requirement for uPA activity in skeletal myogenesis was recently demonstrated in vitro. The role of plasminogen activators in skeletal muscle regeneration in vivo in wild-type, uPA-deficient, and tPA-deficient mice is investigated here. Wild-type and tPA−/− mice completely repaired experimentally damaged skeletal muscle. In contrast, uPA−/− mice had a severe regeneration defect, with decreased recruitment of blood-derived monocytes to the site of injury and with persistent myotube degeneration. In addition, uPA-deficient mice accumulated fibrin in the degenerating muscle fibers; however, the defibrinogenation of uPA-deficient mice resulted in a correction of the muscle regeneration defect. A similar severe regeneration deficit with persistent fibrin deposition was also reproducible in plasminogen-deficient mice after injury, suggesting that fibrinolysis by uPA-mediated plasminogen activation plays a fundamental role in skeletal muscle regeneration. In conclusion, the uPA-plasmin system is identified as a critical component of the mammalian skeletal muscle regeneration process, possibly because it prevents intramuscular fibrin accumulation and contributes to the adequate inflammatory response after injury. These studies demonstrate the requirement of an extracellular proteolytic cascade during muscle regeneration in vivo.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2835-2844 ◽  
Author(s):  
Mònica Suelves ◽  
Roser López-Alemany ◽  
Frederic Lluı́s ◽  
Gloria Aniorte ◽  
Erika Serrano ◽  
...  

Abstract Plasmin, the primary fibrinolytic enzyme, has a broad substrate spectrum and is implicated in biologic processes dependent upon proteolytic activity, such as tissue remodeling and cell migration. Active plasmin is generated from proteolytic cleavage of the zymogen plasminogen (Plg) by urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA). Here, we have investigated the role of plasmin in C2C12 myoblast fusion and differentiation in vitro, as well as in skeletal muscle regeneration in vivo, in wild-type and Plg-deficient mice. Wild-type mice completely repaired experimentally damaged skeletal muscle. In contrast, Plg−/− mice presented a severe regeneration defect with decreased recruitment of blood-derived monocytes and lymphocytes to the site of injury and persistent myotube degeneration. In addition, Plg-deficient mice accumulated fibrin in the degenerating muscle fibers; however, fibrinogen depletion of Plg-deficient mice resulted in a correction of the muscular regeneration defect. Because we found that uPA, but not tPA, was induced in skeletal muscle regeneration, and persistent fibrin deposition was also reproducible in uPA-deficient mice following injury, we propose that fibrinolysis by uPA-dependent plasmin activity plays a fundamental role in skeletal muscle regeneration. In summary, we identify plasmin as a critical component of the mammalian skeletal muscle regeneration process, possibly by preventing intramuscular fibrin accumulation and by contributing to the adequate inflammatory response after injury. Finally, we found that inhibition of plasmin activity with α2-antiplasmin resulted in decreased myoblast fusion and differentiation in vitro. Altogether, these studies demonstrate the requirement of plasmin during myogenesis in vitro and muscle regeneration in vivo.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4172-4172
Author(s):  
Clemens Pausz ◽  
Rula Mawas ◽  
Matthias Unseld ◽  
Anastasia Chilla ◽  
René Novotny ◽  
...  

Abstract In this study we characterized a conserved motif of domain 3 of the urokinase-type plasminogen activator receptor (uPAR) to directly interact with low-density lipoprotein receptor (LDLR)-related protein (LRP) family proteins, thereby affecting endothelial cell motility and angiogenesis in vitro and in vivo. There is increasing evidence that uPAR plays a central role in growth factor induced endothelial cell activation. Beside its proteolytic role, urokinase-type plasminogen activator (uPA) / uPAR-complex formation induces intracellular signal transduction, which leads to endothelial cell migration and invasion. Since uPAR is a GPI-anchored protein, an interaction with transmembrane proteins - such as members of the LDL-receptor family - is required, inducing signal transduction but also regulating distribution of uPAR via its internalization and recycling to the leading edge. Recently, a direct interaction between uPAR and LRP-family members has been suggested to be sufficient to mediate internalization of uPAR-complex. A crystal structure analysis revealed a small sequence of domain 3 (D3) of uPAR, to be highly exposed upon uPA binding to its receptor. Applying affinity chromatography analysis as well as mutation expression studies, we identified the sequence as an LRP-binding motif, which affects endothelial cell spreading, migration and invasion upon VEGF in vivo as well as in vitro. In detail, matrigel-filled angioreactors with embedded retroviral constructs, carrying wild-type or modified uPAR genes, were implanted subcutaneously into uPAR deficient C57BL/6 mice. After explantation, blood vessel in-growth analysis revealed that only angioreactors with reconstituted wild-type uPAR but not reactors with modified uPAR, being deficient in LDLR interaction, showed angiogenesis. To test a therapeutic impact, peptides mimicking the binding motif and competitive for LDLR binding were used. We found that in a dose dependent manner the peptides did not only block uPAR/LDLR-like protein interaction, but were also capable of blocking VEGF-induced endothelial cell migration in vitro. In summary, our data show that a conserved motif of uPAR domain 3 is capable to interact with LDLR-like proteins, which is required for efficient growth-factor induced endothelial cell behavior. Preliminary functional data suggest that this extracellular motif might be a potential therapeutic target in angiogenesis dependent diseases such as cancer. Disclosures No relevant conflicts of interest to declare.


1998 ◽  
Vol 140 (1) ◽  
pp. 233-245 ◽  
Author(s):  
Peter Carmeliet ◽  
Lieve Moons ◽  
Mieke Dewerchin ◽  
Steven Rosenberg ◽  
Jean-Marc Herbert ◽  
...  

It has been proposed that the urokinase receptor (u-PAR) is essential for the various biological roles of urokinase-type plasminogen activator (u-PA) in vivo, and that smooth muscle cells require u-PA for migration during arterial neointima formation. The present study was undertaken to evaluate the role of u-PAR during this process in mice with targeted disruption of the u-PAR gene (u-PAR−/−). Surprisingly, u-PAR deficiency did not affect arterial neointima formation, neointimal cell accumulation, or migration of smooth muscle cells. Indeed, topographic analysis of arterial wound healing after electric injury revealed that u-PAR−/− smooth muscle cells, originating from the uninjured borders, migrated over a similar distance and at a similar rate into the necrotic center of the wound as wild-type (u-PAR+/+) smooth muscle cells. In addition, u-PAR deficiency did not impair migration of wounded cultured smooth muscle cells in vitro. There were no genotypic differences in reendothelialization of the vascular wound. The minimal role of u-PAR in smooth muscle cell migration was not because of absent expression, since wild-type smooth muscle cells expressed u-PAR mRNA and functional receptor in vitro and in vivo. Pericellular plasmin proteolysis, evaluated by degradation of 125I-labeled fibrin and activation of zymogen matrix metalloproteinases, was similar for u-PAR−/− and u-PAR+/+ cells. Immunoelectron microscopy of injured arteries in vivo revealed that u-PA was bound on the cell surface of u-PAR+/+ cells, whereas it was present in the pericellular space around u-PAR−/− cells. Taken together, these results suggest that binding of u-PA to u-PAR is not required to provide sufficient pericellular u-PA–mediated plasmin proteolysis to allow cellular migration into a vascular wound.


2009 ◽  
Vol 296 (4) ◽  
pp. G963-G968 ◽  
Author(s):  
Ramadhan B. Matondo ◽  
Carine Punt ◽  
Judith Homberg ◽  
Mathilda J. M. Toussaint ◽  
Ronald Kisjes ◽  
...  

The serotonin transporter is implicated in the uptake of the vasoconstrictor serotonin from the circulation into the platelets, where 95% of all blood serotonin is stored and released in response to vascular injury. In vivo studies indicated that platelet-derived serotonin mediates liver regeneration after partial hepatectomy. We have recently generated serotonin transporter knockout rats and demonstrated that their platelets were almost completely depleted of serotonin. Here we show that these rats exhibit impaired hemostasis and contain about 1–6% of wild-type serotonin levels in the blood. Despite the marked reduction of serotonin levels in blood and platelets, efficient liver regeneration and collagen-induced platelet aggregation occur in rats lacking the serotonin transporter. These results provide evidence that liver regeneration is not dependent on the release of serotonin from platelets. Our findings indicate that very low levels of serotonin in blood are sufficient for liver regeneration.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 580-580
Author(s):  
Sherry Thornton ◽  
Harini Raghu ◽  
Alice Jone ◽  
Carolina Cruz ◽  
Cheryl L. Rewerts ◽  
...  

Abstract Rheumatoid arthritis (RA) is a common and debilitating autoimmune disease characterized by chronic inflammation, synovial hyperplasia, edema, cartilage and bone erosion and loss of joint function. Increasing evidence suggests that the plasminogen activation (PA) system plays a fundamental role in the mechanisms mediating inflammatory joint disease pathogenesis. However, analysis of the precise contribution of PA system components to arthritis pathogenesis has been complicated by the use of gene-targeted mice on non-susceptible genetic backgrounds or experimental models that simultaneously induce wound trauma in conjunction with arthritis induction. To rigorously define the contribution of the urokinase-type plasminogen activator system to arthritis pathogenesis, previously generated genetic deficiencies in both uPA and uPA receptor (uPAR) were inbred for 7 generations (99% inbred) to the well-characterized, collagen-induced arthritis (CIA)-susceptible strain, DBA/1J. Our results indicate a near complete amelioration of joint disease in uPA-deficient mice that was also observed in uPAR-deficient mice. Limited disease development in both uPA- and uPAR-deficient mice correlated with significantly reduced local mRNA levels of key inflammatory mediators (e.g., TNFα, IL-1β, and IL-6) in these animals. To determine if development of inflammatory joint disease in CIA-challenged mice was dependent on the expression of uPAR by non-hematopoietic- or hematopoietic-derived cells, reciprocal bone marrow transplant studies were performed. Mice in which uPAR deficiency was limited to the bone marrow compartment elicited significantly reduced macroscopic and histopathological disease in the paws and knees compared to wild-type mice or mice in which only hematopoietic-derived cells express uPAR. Our results are the first to report in the context of the highly CIA susceptible DBA/1 background that both uPA and uPAR are key determinants of inflammatory joint disease pathogenesis. Furthermore, our findings indicate a fundamental role for uPAR expression by hematopoietic cells in driving arthritis incidence and progression. Thus, these findings suggest that cell-surface associated uPA/uPAR-mediated proteolysis and/or uPAR-mediated signaling events from bone-marrow derived cells are important in promoting inflammatory joint disease, and that disrupting this key proteolytic/signaling system may provide a novel therapeutic strategy to limit clinical arthritis. Disclosures No relevant conflicts of interest to declare.


1994 ◽  
Vol 71 (01) ◽  
pp. 134-140 ◽  
Author(s):  
S Ueshima ◽  
P Holvoet ◽  
H R Lijnen ◽  
L Nelles ◽  
V Seghers ◽  
...  

SummaryIn an effort to modify the fibrinolytic and/or pharmacokinetic properties of recombinant low M r single-chain urokinase-type plasminogen activator (rscu-PA-32k), mutants were prepared by site-directed mutagenesis of clusters of charged amino acids with the highest solvent accessibility. The following mutants of rscu-PA-32k were prepared: LUK-2 (Lys 212, Glu 213 and Asp 214 to Ala), LUK-3 (Lys 243 and Asp 244 to Ala), LUK-4 (Arg 262, Lys 264, Glu 265 and Arg 267 to Ala), LUK-5 (Lys 300, Glu 301 and Asp 305 to Ala) and LUK-6 (Arg 400, Lys 404, Glu 405 and Glu 406 to Ala).The rscu-PA 32k moictic3 were expressed in High Five Ttichoplasiani cells, and purified to humugciicily from the conditioned cell culture medium, with recoveries of 0.8 to 3.7 mg/1. The specific fibrinolytic activities (220,000 to 300,000 IU/mg), the rates of plasminogen activation by the single-chain moieties and the rates of conversion In lwo chain moieties by plasmin were comparable for mutant and wild-type rscu PA 32k moieties, with the exception of LUK-5 which was virtually inactive. Equi-effective lysis (50% in 2 h) of 60 pi 125I-fibrin labeled plasma clots submerged in 0.5 ml normal human plasma was obtained with 0.7 to 0.8 μg/ml of wild-type or mutant rscu-PA-3?.k, except with LUK-5 (no significant lysis with 16 pg/ml). Following bolus injection in hamsters, all rscu-PA-32k moieties had a comparably rapid plasma clearance (1.3 to 2.7 ml/min), as a result of a short initial half-life (1.4 to 2.5 min). In hamsters with pulmonary embolism, continuous intravenous infusion over 60 min at a dose of 1 mg/kg, resulted in 53 to 72% clot lysis with the mutants, but only 23% with LUK-5, as compared to 36% for wild-type rscu-PA-32k.These data indicate that clustered charge-to-alanine mutants of rscu-PA-32k, designed to eliminate charged regions with the highest solvent accessibility, do not have significantly improved functional, fibrinolytic or pharmacokinetic properties.


1980 ◽  
Vol 238 (1) ◽  
pp. E46-E52
Author(s):  
S. L. Augustine ◽  
R. W. Swick

The recovery of approximately 40% of the total liver protein during the first day after partial hepatectomy was shown to be due to the near cessation of protein breakdown rather than to an increase in protein synthesis. The decrease in degradation of total protein was less if rats were adrenalectomized or protein-depleted prior to partial hepatectomy. The effect of these treatments originally suggested that changes in free amino acid levels in liver might be related to the rate of protein degradation. However, no correlation was found between levels of total free amino acids and rates of breakdown. Measurements of individual amino acids during liver regeneration suggested that levels of free methionine and phenylalanine, amino acids that have been found to lower rates of protein degradation in vitro, are not correlated with rates of breakdown in vivo. The difference between the fractional rate of ornithine aminotransferase degradation (0.68/day and 0.28/day in sham-hepatectomized and partially hepatectomized rats, respectively) was sufficient to account for the higher level of this protein 3 days after surgery in the latter group.


1961 ◽  
Vol 39 (6) ◽  
pp. 1043-1054 ◽  
Author(s):  
D. K. Myers ◽  
C. Anne Hemphill ◽  
Constance M. Townsend

Deoxycytidylate deaminase activity and net synthesis of deoxyribonucleic acid (DNA) in vivo were found to increase at approximately the same time during the early stages of liver regeneration. However, deaminase activity in the regenerating liver remained at a high level for 1 day after DNA synthesis had slowed down again during the later stages of regeneration. The increase in deaminase activity was restricted as a result of exposure to 600 r X radiation during early regeneration, but this effect only became evident 11–16 hours after the irradiation. Irradiation on the second day after partial hepatectomy, when deaminase levels in control regenerating livers were relatively constant, failed to affect the deaminase activity immediately but did produce a 40–50% decrease in activity 11–16 hours later. Other antimitotic agents, e.g., colchicine, had little effect on deaminase activity.


Sign in / Sign up

Export Citation Format

Share Document