scholarly journals Splanchnic sympathetic nerves in the development of mild DOCA-salt hypertension

2011 ◽  
Vol 301 (5) ◽  
pp. H1965-H1973 ◽  
Author(s):  
Sachin S. Kandlikar ◽  
Gregory D. Fink

We previously reported that mild deoxycorticosterone acetate (DOCA)-salt hypertension develops in the absence of generalized sympathoexcitation. However, sympathetic nervous system activity (SNA) is regionally heterogeneous, so we began to investigate the role of sympathetic nerves to specific regions. Our first study on that possibility revealed no contribution of renal nerves to hypertension development. The splanchnic sympathetic nerves are implicated in blood pressure (BP) regulation because splanchnic denervation effectively lowers BP in human hypertension. Here we tested the hypothesis that splanchnic SNA contributes to the development of mild DOCA-salt hypertension. Splanchnic denervation was achieved by celiac ganglionectomy (CGX) in one group of rats while another group underwent sham surgery (SHAM-GX). After DOCA treatment (50 mg/kg) in rats with both kidneys intact, CGX rats exhibited a significantly attenuated increase in BP compared with SHAM-GX rats (15.6 ± 2.2 vs. 25.6 ± 2.2 mmHg, day 28 after DOCA treatment). In other rats, whole body norepinephrine (NE) spillover, measured to determine if CGX attenuated hypertension development by reducing global SNA, was not found to be different between SHAM-GX and CGX rats. In a third group, nonhepatic splanchnic NE spillover was measured as an index of splanchnic SNA, but this was not different between SHAM (non-DOCA-treated) and DOCA rats during hypertension development. In a final group, CGX effectively abolished nonhepatic splanchnic NE spillover. These data suggest that an intact splanchnic innervation is necessary for mild DOCA-salt hypertension development but not increased splanchnic SNA or NE release. Increased splanchnic vascular reactivity to NE during DOCA-salt treatment is one possible explanation.

2011 ◽  
Vol 300 (5) ◽  
pp. H1781-H1787 ◽  
Author(s):  
Sachin S. Kandlikar ◽  
Gregory D. Fink

Excess sympathetic nervous system activity (SNA) is linked to human essential and experimental hypertension. To test whether sympathetic activation is associated with a model of deoxycorticosterone acetate (DOCA)-salt hypertension featuring two kidneys and a moderate elevation of blood pressure, we measured whole body norepinephrine (NE) spillover as an index of global SNA. Studies were conducted in chronically catheterized male Sprague-Dawley rats drinking water containing 1% NaCl and 0.2% KCl. After a 7-day surgical recovery and a 3-day control period, a DOCA pellet (50 mg/kg) was implanted subcutaneously in one group of rats (DOCA), while the other group underwent sham implantation (Sham). NE spillover was measured on control day 2 and days 7 and 14 after DOCA administration or sham implantation. During the control period, mean arterial pressure (MAP) was similar in Sham and DOCA rats. MAP was significantly increased in the DOCA group compared with the Sham group after DOCA administration ( day 14: Sham = 109 ± 5.3, DOCA = 128 ± 3.6 mmHg). However, plasma NE concentration, clearance, and spillover were not different in the two groups at any time. To determine whether selective sympathetic activation to the kidneys contributes to hypertension development, additional studies were performed in renal denervated (RDX) and sham-denervated (Sham-DX) rats. MAP, measured by radiotelemetry, was similar in both groups during the control and DOCA treatment periods. In conclusion, global SNA is not increased during the development of mild DOCA-salt hypertension, and fully intact renal nerves are not essential for hypertension development in this model.


1995 ◽  
Vol 268 (1) ◽  
pp. R40-R49 ◽  
Author(s):  
J. N. Stallone

Deoxycorticosterone acetate (DOCA)-salt hypertension develops to a greater extent in male (M) than in female (F) rats. To determine the role of the vasculature, reactivity to arginine vasopressin (AVP) and prostanoid output were examined in the isolated perfused mesenteric vasculature of hypertensive (HT) and normotensive-control (NTC) M and F rats after acute (1-wk) and chronic (4-wk) DOCA-salt treatment. Systolic blood pressure was significantly higher in M than in F HT rats (187 +/- 3 vs. 151 +/- 3 mmHg after 4 wk; P < 0.02). After acute treatment, vascular reactivity to AVP (maximal perfusion pressure) in HT was elevated in M (181 +/- 18 mmHg; P < 0.02) but not in F (135 +/- 6 mmHg) compared with NTC (90 +/- 6 mmHg, M vs. 119 +/- 5 mmHg, F). After chronic treatment, vascular reactivity to AVP in HT was elevated in both sexes (P < 0.02), although more in F (175 +/- 13 mmHg) than in M (141 +/- 11 mmHg). In contrast, vascular responsiveness to phenylephrine did not differ significantly between M and F NTC or HT preparations after either acute or chronic treatment. Sex differences in basal and AVP-induced 6-ketoprostaglandin (6-keto-PG) F1 alpha and PGE2 output by HT and NTC vasculature were reciprocal to sex differences in the vasoconstriction responses to AVP. After acute treatment, AVP-stimulated 6-keto-PGF1 alpha output by HT was elevated slightly in F (33.6 +/- 1.7 ng/3 min; P < or = 0.02) but not in M (49.9 +/- 4.3 ng/3 min) compared with NTC (23.5 +/- 2.6 ng/3 min, F vs. 34.7 +/- 4.9 ng/3 min, M). After chronic treatment, output by HT was enhanced in both sexes (P < or = to 0.02), although more in M (109 +/- 15.4 ng/3 min) than in F (68 +/- 6.6 ng/3 min)> These findings suggest that sex differences in the relative balance between AVP-induced vasoconstriction and vasodilatory prostanoid release may contribute to male-female differences in mesenteric vascular reactivity to AVP in NT and that disturbances in this balance may be responsible, at least in part, for the sex- and time-dependent changes in reactivity to AVP observed during the development of DOCA-salt hypertension.


2005 ◽  
Vol 289 (4) ◽  
pp. H1519-H1529 ◽  
Author(s):  
Frédéric Jacob ◽  
Leah A. Clark ◽  
Pilar Ariza Guzman ◽  
John W. Osborn

Centrally mediated hyperactivity of the autonomic nervous system contributes to DOCA hypertension; however, the targeted peripheral vascular bed(s) remain unclear. We propose that if renal sympathetic activity is a factor in the development of DOCA-salt hypertension, then renal denervation (RDNX) should attenuate the hypertensive response. In protocol 1, uninephrectomized RDNX ( n = 9) and sham-denervated ( n = 6) Sprague-Dawley rats were allowed free access to 0.9% NaCl solution and 0.1% NaCl diet. Mean arterial pressure (MAP) and heart rate were telemetrically recorded for 4 days before and 36 days after DOCA (100 mg/rat) implantation; sodium and water balances were recorded daily. Protocol 2 was similar except that saline intake in sham rats ( n = 7) was matched to that observed in RDNX rats of protocol 1 for 30 days; for the last 10 days, the rats were allowed free access to saline. Before DOCA in protocol 1, MAP was lower ( P < 0.05) in RDNX rats (99 ± 1 mmHg) compared with sham rats (111 ± 3 mmHg); however, heart rate and sodium and water balances were similar between groups. RDNX attenuated the MAP response to DOCA by ∼50% (ΔMAP = 22 ± 3 mmHg, where Δ is change in MAP) when compared with sham rats (ΔMAP = 38 ± 6). RDNX rats consumed significantly less saline than sham rats, and cumulative sodium and water balances were reduced by 33% and 23%, respectively. In protocol 2, a similar pattern in MAP elevation was observed in RDNX and saline-restricted, sham-denervated rats even when saline restriction was removed. These results indicate that the renal sympathetic nerves are important in hypertension development but that other factors are also involved.


1998 ◽  
Vol 275 (1) ◽  
pp. H285-H291 ◽  
Author(s):  
Francine G. Smith ◽  
Isam Abu-Amarah

To investigate the role of renal sympathetic nerves in modulating cardiovascular and endocrine responses to hemorrhage early in life, we carried out three experiments in conscious, chronically instrumented lambs with intact renal nerves (intact; n = 8) and with bilateral renal denervation (denervated; n = 5). Measurements were made 1 h before and 1 h after 0, 10, and 20% hemorrhage. Blood pressure decreased transiently after 20% hemorrhage in intact lambs and returned to control levels. In denervated lambs, however, blood pressure remained decreased after 60 min. After 20% hemorrhage, heart rate increased from 170 ± 16 to 207 ± 18 beats/min in intact lambs but not in denervated lambs, in which basal heart rates were already elevated to 202 ± 21 beats/min. Despite an elevated plasma renin activity (PRA) measured in denervated (12.0 ± 6.4 ng ANG I ⋅ ml−1 ⋅ h−1) compared with intact lambs (4.0 ± 1.1 ng ANG I ⋅ ml−1 ⋅ h−1), the increase in PRA in response to 20% hemorrhage was similar in both groups. Plasma levels of arginine vasopressin increased from 11 ± 8 to 197 ± 246 pg/ml after 20% hemorrhage in intact lambs but remained unaltered in denervated lambs from baseline levels of 15 ± 10 pg/ml. These observations provide evidence that in the newborn, renal sympathetic nerves modulate cardiovascular and endocrine responses to hemorrhage.


2018 ◽  
Vol 6 (3) ◽  
pp. e13602 ◽  
Author(s):  
Jason D. Foss ◽  
Jessica Fiege ◽  
Yoji Shimizu ◽  
John P. Collister ◽  
Tim Mayerhofer ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuanbo Wu ◽  
Changlong An ◽  
Xiaogao Jin ◽  
Zhaoyong Hu ◽  
Yanlin Wang

AbstractCirculating cells have a pathogenic role in the development of hypertensive nephropathy. However, how these cells infiltrate into the kidney are not fully elucidated. In this study, we investigated the role of CXCR6 in deoxycorticosterone acetate (DOCA)/salt-induced inflammation and fibrosis of the kidney. Following uninephrectomy, wild-type and CXCR6 knockout mice were treated with DOCA/salt for 3 weeks. Blood pressure was similar between wild-type and CXCR6 knockout mice at baseline and after treatment with DOCA/salt. Wild-type mice develop significant kidney injury, proteinuria, and kidney fibrosis after three weeks of DOCA/salt treatment. CXCR6 deficiency ameliorated kidney injury, proteinuria, and kidney fibrosis following treatment with DOCA/salt. Moreover, CXCR6 deficiency inhibited accumulation of bone marrow–derived fibroblasts and myofibroblasts in the kidney following treatment with DOCA/salt. Furthermore, CXCR6 deficiency markedly reduced the number of macrophages and T cells in the kidney after DOCA/salt treatment. In summary, our results identify a critical role of CXCR6 in the development of inflammation and fibrosis of the kidney in salt-sensitive hypertension.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Brett L Jennings ◽  
Anne M Estes ◽  
Fariborz A Yaghini ◽  
Zheng Fan ◽  
Kafait U Malik

Previously, we have shown that cytochrome P450 (CYP) 1B1 contributes to deoxycorticosterone acetate (DOCA) salt-induced hypertension and associated increase in vascular reactivity, endothelial dysfunction, and vascular oxidative stress in rats. This study was conducted to determine whether Cyp1b1 gene disruption protects against cardiac dysfunction, measured by echocardiography, in this model of hypertension in mice. Eight week old male mice were uninephrectomized, subcutaneously implanted with a DOCA pellet (50mg/kg) and given 1% saline in drinking water for 4 weeks, and blood pressure (BP) was measured weekly by tail cuff method. DOCA-salt treatment increased systolic BP in Cyp1b1 +/+ mice to a greater degree than in Cyp1b1 -/- mice (115 ± 3 to 188 ± 5 mmHg vs. 120 ± 5 to 152 ± 8 mmHg, respectively, P < 0.05). DOCA-salt treatment produced cardiac dysfunction, as indicated by decreased fractional shortening (FS), ejection fraction (EF), and the ratio of peak early to late diastolic mitral annulus velocities (E′/A′), and an increase in both end-diastolic volume and end-systolic volume, in Cyp1b1 +/+ , but not Cyp1b1 -/- mice (Table 1). Cardiac production of reactive oxygen species, as indicated by 2-hydroxyethidium fluorescence intensity, was increased in DOCA-salt treated Cyp1b1 +/+ mice, which was attenuated in Cyp1b1 -/- mice. These data suggest that Cyp1b1 plays a pivotal role in cardiac dysfunction associated with DOCA-salt hypertension in mice by increasing oxidative stress, and that it could serve as a potential target for drugs to treat cardiovascular dysfunction associated with excess mineralocorticoid-salt hypertension.


2020 ◽  
Vol 319 (4) ◽  
pp. F647-F653
Author(s):  
Fei Wang ◽  
Ying Sun ◽  
Renfei Luo ◽  
Xiaohan Lu ◽  
Baoxue Yang ◽  
...  

It has been shown that cyclooxygenase (COX)-2-dependent activation of renal (pro)renin receptor (PRR) contributes to angiotensin II (ANG II)-induced hypertension. However, less is known about the involvement of this mechanism in ANG II-independent hypertension. The goal of the present study was to test whether or not COX-2-dependent upregulation of PRR serves as a universal mechanism contributing to ANG II-dependent and -independent hypertension. Here, we examined the association between renal COX-2 and PRR during deoxycorticosterone acetate (DOCA)-salt hypertension in rats. By immunoblot analysis and immunofluorescence, renal protein expression of PRR was remarkably upregulated by DOCA-salt treatment. Surprisingly, this upregulation of renal PRR expression was unaffected by a COX-2 inhibitor, celecoxib. To address the role of renal PRR to the pathogenesis of DOCA-salt hypertension, a decoy PRR inhibitor, PRO20, was infused to the renal medulla of uninephrectomized Sprague-Dawley rats for 14 days. Radiotelemetry demonstrated effective attenuation of DOCA-salt hypertension by intramedullary infusion of a PRR inhibitor, PRO20. In parallel, DOCA-salt-induced hypertrophy in the heart and kidney as well as proteinuria were improved, accompanied with blunted polydipsia and polyuria. In contrast, intravenous infusion of PRO20 was less effective in attenuating DOCA-salt hypertension and cardiorenal injury. Together, these results suggest that COX-2-independent activation of renal PRR contributes to DOCA-salt hypertension.


1990 ◽  
Vol 259 (5) ◽  
pp. R1025-R1034 ◽  
Author(s):  
P. C. Janiak ◽  
S. J. Lewis ◽  
M. J. Brody

The possibility that central mineralocorticoid binding sites are involved in the development of mineralocorticoid hypertension was examined using chronic blockade of these sites with a specific mineralocorticoid receptor antagonist RU 28318 administered by intracerebroventricular (icv) infusion. The antagonist significantly attenuated the development of deoxycorticosterone acetate (DOCA)-salt hypertension, but the development of one-kidney, one-clip renal hypertension was not affected. This antihypertensive action was attributable to a central action, since intraperitoneal infusion of the same dose of mineralocorticoid antagonist did not alter the peak development of DOCA-salt hypertension. The icv infusion of RU 28318 did not change either the increase of fluid intake induced by DOCA-salt treatment or the pressor reactivity to centrally or peripherally injected arginine vasopressin and angiotensin II and peripherally administered phenylephrine. The antihypertensive action of icv infusion of the mineralocorticoid antagonist was associated with a reduction of neurogenic vasomotor tone and a restoration of impaired arterial baroreflexes. We conclude that functional integrity of central mineralocorticoid binding sites is required for the full development of DOCA-salt hypertension.


2010 ◽  
Vol 299 (6) ◽  
pp. R1500-R1510 ◽  
Author(s):  
Joanna M. Abrams ◽  
William C. Engeland ◽  
John W. Osborn

DOCA-salt treatment increases mean arterial pressure (MAP), while central infusion of benzamil attenuates this effect. The present study used c-Fos immunoreactivity to assess the role of benzamil-sensitive proteins in the brain on neural activity following chronic DOCA-salt treatment. Uninephrectomized rats were instrumented with telemetry transmitters for measurement of MAP and with an intracerebroventricular (ICV) cannula for benzamil administration. Groups included rats receiving DOCA-salt treatment alone, rats receiving DOCA-salt treatment with ICV benzamil, and appropriate controls. At study completion, MAP in vehicle-treated DOCA-salt rats reached 142 ± 4 mmHg. In contrast DOCA-salt rats receiving ICV benzamil had lower MAP (124 ± 3 mmHg). MAP in normotensive controls was 102 ± 3 mmHg. c-Fos immunoreactivity was quantified in the supraoptic nucleus (SON) and across subnuclei of the hypothalamic paraventricular nucleus (PVN), as well as other cardiovascular regulatory sites. Compared with vehicle-treated normotensive controls, c-Fos expression was increased in the SON and all subnuclei of the PVN, but not in other key autonomic nuclei, such as the rostroventrolateral medulla. Moreover, benzamil treatment decreased c-Fos immunoreactivity in the SON and in medial parvocellular and posterior magnocellular neurons of the PVN in DOCA-salt rats but not areas associated with regulation of sympathetic activity. Our results do not support the hypothesis that DOCA-salt increases neuronal activity (as indicated by c-Fos immunoreactivity) of other key regions that regulate sympathetic activity. These results suggest that ICV benzamil attenuates DOCA-salt hypertension by modulation of neuroendocrine-related PVN nuclei rather than inhibition of PVN sympathetic premotor neurons in the PVN and rostroventrolateral medulla.


Sign in / Sign up

Export Citation Format

Share Document