scholarly journals Reduced membrane cholesterol limits pulmonary endothelial Ca2+ entry after chronic hypoxia

2017 ◽  
Vol 312 (6) ◽  
pp. H1176-H1184 ◽  
Author(s):  
Bojun Zhang ◽  
Jay S. Naik ◽  
Nikki L. Jernigan ◽  
Benjimen R. Walker ◽  
Thomas C. Resta

Chronic hypoxia (CH)-induced pulmonary hypertension is associated with diminished production of endothelium-derived Ca2+-dependent vasodilators such as nitric oxide. Interestingly, ATP-induced endothelial Ca2+ entry as well as membrane cholesterol (Chol) are decreased in pulmonary arteries from CH rats (4 wk, barometric pressure = 380 Torr) compared with normoxic controls. Store-operated Ca2+ entry (SOCE) and depolarization-induced Ca2+ entry are major components of the response to ATP and are similarly decreased after CH. We hypothesized that membrane Chol facilitates both SOCE and depolarization-induced pulmonary endothelial Ca2+ entry and that CH attenuates these responses by decreasing membrane Chol. To test these hypotheses, we administered Chol or epicholesterol (Epichol) to acutely isolated pulmonary arterial endothelial cells (PAECs) from control and CH rats to either supplement or replace native Chol, respectively. The efficacy of membrane Chol manipulation was confirmed by filipin staining. Epichol greatly reduced ATP-induced Ca2+ influx in PAECs from control rats. Whereas Epichol similarly blunted endothelial SOCE in PAECs from both groups, Chol supplementation restored diminished SOCE in PAECs from CH rats while having no effect in controls. Similar effects of Chol manipulation on PAEC Ca2+ influx were observed in response to a depolarizing stimulus of KCl. Furthermore, KCl-induced Ca2+ entry was inhibited by the T-type Ca2+ channel antagonist mibefradil but not the L-type Ca2+ channel inhibitor diltiazem. We conclude that PAEC membrane Chol is required for ATP-induced Ca2+ entry and its two components, SOCE and depolarization-induced Ca2+ entry, and that reduced Ca2+ entry after CH may be due to loss of this key regulator. NEW & NOTEWORTHY This research is the first to examine the direct role of membrane cholesterol in regulating pulmonary endothelial agonist-induced Ca2+ entry and its components. The results provide a potential mechanism by which chronic hypoxia impairs pulmonary endothelial Ca2+ influx, which may contribute to pulmonary hypertension.

1993 ◽  
Vol 265 (6) ◽  
pp. H2175-H2183 ◽  
Author(s):  
A. G. Durmowicz ◽  
E. C. Orton ◽  
K. R. Stenmark

Severe neonatal pulmonary hypertension (PH) may have both reversible (vasoconstrictive) and “fixed” (vasodilator unresponsive) components. To assess when and to what degree vasodilator unresponsive PH developed in the neonate, pulmonary arterial pressures (PAP) and cardiac outputs (CO) were measured, and total pulmonary resistances (TPR) were calculated in neonatal calves exposed to chronic hypoxia (CH) (barometric pressure of 430 mmHg = 4,570 m) for 1, 3, 7, and 14 days under both normoxic (barometric pressure of 640 mmHg = 1,500 m) and hypoxic conditions with and without an infusion of the vasodilator acetylcholine (ACh). Studies were done at 4 h and at 2, 4, 8, and 15 days of life in both control and CH animals. The fixed component of PH was defined as that PAP or TPR above the control baseline value which remained in CH animals after an infusion ACh at 1,500 m. Small pulmonary arteries were also examined histologically in an attempt to correlate relative changes in the reversible and fixed elements of PH with alterations in vessel structure. Chronic exposure to 4,570 m altitude prevented the normal postnatal fall in PAP and TPR observed in control animals. Instead, PAP, TPR, and the structure of small pulmonary arteries initially remained similar to those of the 4-h-old newborn. By 7 days exposure to 4,570 m, a significant element of fixed PH developed, which increased dramatically between the 7- and 14-day exposure periods and appeared to correlate with a narrowed pulmonary artery lumen and increased medial and adventitial thickness.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 302 (6) ◽  
pp. C931-C940 ◽  
Author(s):  
Nikki L. Jernigan ◽  
Lindsay M. Herbert ◽  
Benjimen R. Walker ◽  
Thomas C. Resta

Acid-sensing ion channel 1 (ASIC1) is a newly characterized contributor to store-operated Ca2+ entry (SOCE) in pulmonary vascular smooth muscle (VSM). Since SOCE is implicated in elevated basal VSM intracellular Ca2+ concentration ([Ca2+]i) and augmented vasoconstriction in chronic hypoxia (CH)-induced pulmonary hypertension, we hypothesized that ASIC1 contributes to these responses. To test this hypothesis, we examined effects of the specific pharmacologic ASIC1a inhibitor, psalmotoxin 1 (PcTX1), on vasoconstrictor and vessel wall [Ca2+]i responses to UTP and KCl (depolarizing stimulus) in fura-2-loaded, pressurized small pulmonary arteries from control and CH (4 wk at 0.5 atm) Wistar rats. PcTX1 had no effect on basal vessel wall [Ca2+]i, but attenuated vasoconstriction and increases in vessel wall [Ca2+]i to UTP in arteries from control and CH rats; normalizing responses between groups. In contrast, responses to the depolarizing stimulus, KCl, were unaffected by CH exposure or PcTX1. Upon examining potential Ca2+ influx mechanisms, we found that PcTX1 prevented augmented SOCE following CH. Exposure to CH resulted in a significant increase in pulmonary arterial ASIC1 protein. This study supports a novel role of ASIC1 in elevated receptor-stimulated vasoconstriction following CH which is likely mediated through increased ASIC1 expression and SOCE.


2012 ◽  
Vol 303 (12) ◽  
pp. C1229-C1243 ◽  
Author(s):  
Abigail S. Forrest ◽  
Talia C. Joyce ◽  
Marissa L. Huebner ◽  
Ramon J. Ayon ◽  
Michael Wiwchar ◽  
...  

Pulmonary artery smooth muscle cells (PASMCs) are more depolarized and display higher Ca2+ levels in pulmonary hypertension (PH). Whether the functional properties and expression of Ca2+-activated Cl− channels (ClCa), an important excitatory mechanism in PASMCs, are altered in PH is unknown. The potential role of ClCa channels in PH was investigated using the monocrotaline (MCT)-induced PH model in the rat. Three weeks postinjection with a single dose of MCT (50 mg/kg ip), the animals developed right ventricular hypertrophy (heart weight measurements) and changes in pulmonary arterial flow (pulse-waved Doppler imaging) that were consistent with increased pulmonary arterial pressure and PH. Whole cell patch experiments revealed an increase in niflumic acid (NFA)-sensitive Ca2+-activated Cl− current [ ICl(Ca)] density in PASMCs from large conduit and small intralobar pulmonary arteries of MCT-treated rats vs. aged-matched saline-injected controls. Quantitative RT-PCR and Western blot analysis revealed that the alterations in ICl(Ca) were accompanied by parallel changes in the expression of TMEM16A, a gene recently shown to encode for ClCa channels. The contraction to serotonin of conduit and intralobar pulmonary arteries from MCT-treated rats exhibited greater sensitivity to nifedipine (1 μM), an l-type Ca2+ channel blocker, and NFA (30 or 100 μM, with or without 10 μM indomethacin to inhibit cyclooxygenases) or T16AInh-A01 (10 μM), TMEM16A/ClCa channel inhibitors, than that of control animals. In conclusion, augmented ClCa/TMEM16A channel activity is a major contributor to the changes in electromechanical coupling of PA in this model of PH. TMEM16A-encoded channels may therefore represent a novel therapeutic target in this disease.


Author(s):  
Aiping Liu ◽  
Lian Tian ◽  
Diana M. Tabima ◽  
Naomi C. Chesler

Pulmonary artery hypertension (PAH) is a female dominant disease (the female-to-male ratio is 4:1), characterized by small distal pulmonary arterial narrowing and large proximal arterial stiffening, which increase right ventricle (RV) afterload and ultimately lead to RV failure [1,2]. Our recent studies have shown that collagen accumulation induced by chronic hypoxia increases the stiffness of the large extralobar pulmonary arteries (PAs) [3], and affects pulmonary vascular impedance (PVZ) [4]. The role of collagen in the female predominance in developing PAH has not been explored to date.


2005 ◽  
Vol 99 (2) ◽  
pp. 670-676 ◽  
Author(s):  
Candice D. Fike ◽  
Yongmei Zhang ◽  
Mark R. Kaplowitz

The pulmonary vasoconstrictor, thromboxane, may contribute to the development of pulmonary hypertension. Our objective was to determine whether a combined thromboxane synthase inhibitor-receptor antagonist, terbogrel, prevents pulmonary hypertension and the development of aberrant pulmonary arterial responses in newborn piglets exposed to 3 days of hypoxia. Piglets were maintained in room air (control) or 11% O2 (hypoxic) for 3 days. Some hypoxic piglets received terbogrel (10 mg/kg po bid). Pulmonary arterial pressure, pulmonary wedge pressure, and cardiac output were measured in anesthetized animals. A cannulated artery technique was used to measure responses to acetylcholine. Pulmonary vascular resistance for terbogrel-treated hypoxic piglets was almost one-half the value of untreated hypoxic piglets but remained greater than values for control piglets. Dilation to acetylcholine in preconstricted pulmonary arteries was greater for terbogrel-treated hypoxic than for untreated hypoxic piglets, but it was less for pulmonary arteries from both groups of hypoxic piglets than for control piglets. Terbogrel may ameliorate pulmonary artery dysfunction and attenuate the development of chronic hypoxia-induced pulmonary hypertension in newborns.


2012 ◽  
Vol 113 (9) ◽  
pp. 1343-1352 ◽  
Author(s):  
Larissa A. Shimoda

When exposed to chronic hypoxia (CH), the pulmonary circulation responds with enhanced contraction and vascular remodeling, resulting in elevated pulmonary arterial pressures. Our work has identified CH-induced alterations in the expression and activity of several ion channels and transporters in pulmonary vascular smooth muscle that contribute to the development of hypoxic pulmonary hypertension and uncovered a critical role for the transcription factor hypoxia-inducible factor-1 (HIF-1) in mediating these responses. Current work is focused on the regulation of HIF in the chronically hypoxic lung and evaluation of the potential for pharmacological inhibitors of HIF to prevent, reverse, or slow the progression of pulmonary hypertension.


1991 ◽  
Vol 71 (6) ◽  
pp. 2218-2223 ◽  
Author(s):  
S. P. Janssens ◽  
B. T. Thompson ◽  
C. R. Spence ◽  
C. A. Hales

Chronic hypoxia increases pulmonary arterial pressure (PAP) as a result of vasoconstriction, polycythemia, and vascular remodeling with medial thickening. To determine whether preventing the polycythemia with repeated bleeding would diminish the pulmonary hypertension and remodeling, we compared hemodynamic and histological profiles in hypoxic bled (HB, n = 6) and hypoxic polycythemic guinea pigs (H, n = 6). After 10 days in hypoxia (10% O2), PAP was increased from 10 +/- 1 (SE) mmHg in room air controls (RA, n = 5) to 20 +/- 1 mmHg in H (P less than 0.05) but was lower in HB (15 +/- 1 mmHg, P less than 0.05 vs. H). Cardiac output and pulmonary artery vasoreactivity did not differ among groups. Total pulmonary vascular resistance increased from 0.072 +/- 0.011 mmHg.ml-1.min in RA to 0.131 mmHg.ml-1.min in H but was significantly lower in HB (0.109 +/- 0.006 mmHg.ml-1.min). Hematocrit increased with hypoxia (57 +/- 3% in H vs. 42 +/- 1% in RA, P less than 0.05), and bleeding prevented the increase (46 +/- 4% in HB, P less than 0.05 vs. H only). The proportion of thick-walled peripheral pulmonary vessels (53.2 +/- 2.9% in HB and 50.6 +/- 4.8% in H vs. 31.6 +/- 2.6% in RA, P less than 0.05) and the percent medial thickness of pulmonary arteries adjacent to alveolar ducts (7.2 +/- 0.6% in HB and 7.0 +/- 0.4% in H vs. 5.2 +/- 0.4% in RA, P less than 0.05) increased to a similar degree in both hypoxic groups. A similar tendency was present in larger bronchiolar vessels.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 10 (4) ◽  
pp. 204589402097355
Author(s):  
Charles E Norton ◽  
Nikki L Jernigan ◽  
Benjimen R Walker ◽  
Thomas C Resta

Enhanced vasoconstriction is increasingly identified as an important contributor to the development of pulmonary hypertension. Chronic hypoxia results in enhanced Rho kinase mediated Ca2+ sensitization contributing to pressure-dependent pulmonary arterial tone as well as augmented vasoconstriction to endothelin-1 and depolarizing stimuli. We sought to investigate the interaction between these vasoconstrictor stimuli in isolated, pressurized, pulmonary arteries. We used the K+ ionophore, valinomycin, to clamp membrane potential (Vm) to investigate the role of membrane depolarization in endothelin-1 and pressure-dependent constriction, and endothelin-1 receptor inhibitors to determine whether membrane depolarization or stretch signal through endothelin-1 receptors. Clamping Vm prevented pressure-dependent tone, but not enhanced vasoconstriction to endothelin-1 following chronic hypoxia. Furthermore, endothelin-1 receptor inhibition had no effect on either pressure-dependent tone or vasoconstriction to KCl. As Src kinases contribute to both pressure-dependent tone and enhanced endothelin-1 vasoconstriction following chronic hypoxia, we further investigated their role in depolarization-induced vasoconstriction. Inhibition of Src kinases attenuated enhanced vasoconstriction to KCl. We conclude that membrane depolarization contributes to pressure-dependent tone but not enhanced vasoconstriction to ET-1, and that Src kinases serve as upstream mediators facilitating enhanced Rho kinase-dependent vasoconstriction following chronic hypoxia.


2005 ◽  
Vol 98 (3) ◽  
pp. 1111-1118 ◽  
Author(s):  
Candice D. Fike ◽  
Mark R. Kaplowitz ◽  
Yongmei Zhang ◽  
Sandra L. Pfister

Our objective was to determine whether cyclooxygenase (COX)-2-dependent metabolites contribute to the altered pulmonary vascular responses that manifest in piglets with chronic hypoxia-induced pulmonary hypertension. Piglets were raised in either room air (control) or hypoxia for 3 days. The effect of the COX-2 selective inhibitor NS-398 on responses to arachidonic acid or acetylcholine (ACh) was measured in endothelium-intact and denuded pulmonary arteries (100- to 400-μm diameter). Pulmonary arterial production of the stable metabolites of thromboxane and prostacyclin was assessed in the presence and absence of NS-398. Dilation to arachidonic acid was greater for intact control than for intact hypoxic arteries, was unchanged by NS-398 in intact arteries of either group, and was augmented by NS-398 in denuded hypoxic arteries. ACh responses, which were dilation in intact control arteries but constriction in intact and denuded hypoxic arteries, were diminished by NS-398 treatment of all arteries. NS-398 reduced prostacyclin production by control pulmonary arteries and reduced thromboxane production by hypoxic pulmonary arteries. COX-2-dependent contracting factors, such as thromboxane, contribute to aberrant pulmonary arterial responses in piglets exposed to 3 days of hypoxia.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 57
Author(s):  
Kondababu Kurakula ◽  
Valérie F.E.D. Smolders ◽  
Olga Tura-Ceide ◽  
J. Wouter Jukema ◽  
Paul H. A. Quax ◽  
...  

Pulmonary arterial hypertension (PAH) is a rare, complex, and progressive disease that is characterized by the abnormal remodeling of the pulmonary arteries that leads to right ventricular failure and death. Although our understanding of the causes for abnormal vascular remodeling in PAH is limited, accumulating evidence indicates that endothelial cell (EC) dysfunction is one of the first triggers initiating this process. EC dysfunction leads to the activation of several cellular signalling pathways in the endothelium, resulting in the uncontrolled proliferation of ECs, pulmonary artery smooth muscle cells, and fibroblasts, and eventually leads to vascular remodelling and the occlusion of the pulmonary blood vessels. Other factors that are related to EC dysfunction in PAH are an increase in endothelial to mesenchymal transition, inflammation, apoptosis, and thrombus formation. In this review, we outline the latest advances on the role of EC dysfunction in PAH and other forms of pulmonary hypertension. We also elaborate on the molecular signals that orchestrate EC dysfunction in PAH. Understanding the role and mechanisms of EC dysfunction will unravel the therapeutic potential of targeting this process in PAH.


Sign in / Sign up

Export Citation Format

Share Document