Childhood psychosocial stress is linked with impaired vascular endothelial function, lower SIRT1, and oxidative stress in young adulthood

Author(s):  
Nathaniel D.M. Jenkins ◽  
Emily M. Rogers ◽  
Nile F. Banks ◽  
Patrick M. Tomko ◽  
Christina M. Sciarrillo ◽  
...  

Adverse childhood experiences (ACEs) are psychosocial stressors that occur during sensitive developmental windows and are associated with increased lifetime cardiovascular disease (CVD) risk in a dose-dependent manner. Vascular endothelial dysfunction is a pathophysiological mechanism that promotes hypertension and CVD, and may be a mechanism by which ACEs contribute to lifetime CVD risk. We examined whether exposure to ACEs is associated with reduced vascular endothelial function (VEF) in otherwise healthy, young adult women (20.7 ± 3 years) with (ACE+) versus without (ACE-) ACEs, explored whether differences in circulating SIRT1 or systemic oxidative stress could explain ACEs-related differences in VEF, and examined the ability of a pilot, 8-week exercise intervention to augment VEF and SIRT1, or reduce oxidized LDL cholesterol (oxLDL) in ACE+ young adult women. Forty-two otherwise healthy young adults completed this study. Prior to the intervention, VEF (P = 0.002) and SIRT1 (P = 0.004) were lower in the ACE+ than ACE- group, but oxLDL concentrations were not different (P = 0.77). There were also significant associations (P ≤ 0.04) among FMD, SIRT1, and oxLDL in the ACE+, but not ACE- group. Adjusting for circulating SIRT1 and oxLDL reduced the differences in FMD observed between groups (P = 0.10), but only SIRT1 was a significant adjuster of the means (P < 0.05). The exercise intervention employed was unable to enhance VEF or SIRT1 in the ACE+ exercise group. Our data suggest that ACEs likely increase susceptibility to hypertension and CVD via reduced vascular function, perhaps through a SIRT1 pathway-related mechanism.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Qiuan Zhong ◽  
Qingjiao Nong ◽  
Baoyu Mao ◽  
Xue Pan ◽  
Liuren Meng

Impaired vascular endothelial function has attracted attention as a prognostic indicator of cardiovascular prevention. The association between impaired endothelial function and cardiovascular risk in the asymptomatic population, however, has been poorly explored. We evaluated the association of brachial artery flow-mediated dilation (FMD) with Framingham-estimated 10-year cardiovascular disease (CVD) risk in subjects free of CVD, especially by cardiovascular risk profiles. In total, 680 adults aged 30-74 years were enrolled from Rongan and Rongshui of Liuzhou, Guangxi, China, through a cross-sectional study in 2015. In the full-adjusted model, the odds ratio for the estimated 10-year CVD risk comparing the low FMD (<6%) with the high FMD (≥10%) was 2.81 (95% confidence interval [CI]: 1.21, 6.53;Pfor trend = 0.03). In subgroup analyses, inverse associations between FMD and the estimated 10-year CVD risk were found in participants with specific characteristics. The adjusted odds ratios, comparing the 25th and the 75th percentiles of FMD, were 2.77 (95% CI: 1.54, 5.00) for aged ≥60 years, 1.77 (95% CI: 1.16, 2.70) for female, 1.59 (95% CI: 1.08, 2.35) for nonsmokers, 1.74 (95% CI: 1.02, 2.97) for hypertension, 1.59 (95% CI: 1.04, 2.44) for normal glycaemia, 2.03 (95% CI: 1.19, 3.48) for C-reactive protein ≥10 mg/L, and 1.85 (95% CI: 1.12, 3.06) for eGFR <106 mL/minute per 1.73 m2. Therefore, impaired endothelial function is associated with increased CVD risk in asymptomatic adults. This inverse association is more likely to exist in subjects with higher cardiovascular risk.


2019 ◽  
Vol 317 (6) ◽  
pp. H1292-H1300 ◽  
Author(s):  
Young-Rae Kim ◽  
Julia S. Jacobs ◽  
Qiuxia Li ◽  
Ravinder Reddy Gaddam ◽  
Ajit Vikram ◽  
...  

SUMOylation is a posttranslational modification of lysine residues. Modification of proteins by small ubiquitin-like modifiers (SUMO)1, -2, and -3 can achieve varied, and often unique, physiological and pathological effects. We looked for SUMO2-specific effects on vascular endothelial function. SUMO2 expression was upregulated in the aortic endothelium of hypercholesterolemic low-density lipoprotein receptor-deficient mice and was responsible for impairment of endothelium-dependent vasorelaxation in these mice. Moreover, overexpression of SUMO2 in aortas ex vivo, in cultured endothelial cells, and transgenically in the endothelium of mice increased vascular oxidative stress and impaired endothelium-dependent vasorelaxation. Conversely, inhibition of SUMO2 impaired physiological endothelium-dependent vasorelaxation in normocholesterolemic mice. These findings indicate that while endogenous SUMO2 is important in maintenance of normal endothelium-dependent vascular function, its upregulation impairs vascular homeostasis and contributes to hypercholesterolemia-induced endothelial dysfunction. NEW & NOTEWORTHY Sumoylation is known to impair vascular function; however, the role of specific SUMOs in the regulation of vascular function is not known. Using multiple complementary approaches, we show that hyper-SUMO2ylation impairs vascular endothelial function and increases vascular oxidative stress, whereas endogenous SUMO2 is essential for maintenance of normal physiological function of the vascular endothelium.


2012 ◽  
Vol 109 (5) ◽  
pp. 882-893 ◽  
Author(s):  
Kevin D. Ballard ◽  
Brian R. Kupchak ◽  
Brittanie M. Volk ◽  
Eunice Mah ◽  
Aida Shkreta ◽  
...  

Whey protein intake reduces CVD risk, but little is known whether whey-derived bioactive peptides regulate vascular endothelial function (VEF). We determined the impact of a whey-derived extract (NOP-47) on VEF in individuals with an increased cardiovascular risk profile. Men and women with impaired brachial artery flow-mediated dilation (FMD) (n 21, age 55 (sem 1·3) years, BMI 27·8 (sem 0·6) kg/m2, FMD 3·7 (sem 0·4) %) completed a randomised, cross-over study to examine whether ingestion of NOP-47 (5 g) improves postprandial VEF. Brachial artery FMD, plasma amino acids, insulin, and endothelium-derived vasodilators and vasoconstrictors were measured for 2 h after ingestion of NOP-47 or placebo. Acute NOP-47 ingestion increased FMD at 30 min (4·6 (sem 0·5) %) and 120 min (5·1 (sem 0·5) %) post-ingestion (P< 0·05, time × trial interaction), and FMD responses at 120 min were significantly greater in the NOP-47 trial compared with placebo (4·3 (sem 0·5) %). Plasma amino acids increased at 30 min following NOP-47 ingestion (P< 0·05). Serum insulin increased at 15, 30 and 60 min (P< 0·001) following NOP-47 ingestion. No changes were observed between the trials for plasma NO∙ and prostacyclin metabolites or endothelin-1. Ingestion of a rapidly absorbed extract derived from whey protein improved endothelium-dependent dilation in older adults by a mechanism independent of changes in circulating vasoactive compounds. Future investigation is warranted in individuals at an increased CVD risk to further elucidate potential health benefits and the underlying mechanisms of extracts derived from whey.


Sign in / Sign up

Export Citation Format

Share Document