In vivo adenoviral transfer of sorcin reverses cardiac contractile abnormalities of diabetic cardiomyopathy

2004 ◽  
Vol 286 (1) ◽  
pp. H68-H75 ◽  
Author(s):  
Jorge Suarez ◽  
Darrell D. Belke ◽  
Bernd Gloss ◽  
Thomas Dieterle ◽  
Patrick M. McDonough ◽  
...  

In many types of heart failure cardiac myocyte Ca2+ handling is abnormal because of downregulation of key Ca2+-handling proteins like sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a and ryanodine receptor (RyR)2. The alteration in SERCA2a and RyR2 expression results in altered cytosolic Ca2+ transients, leading to abnormal contraction. Sorcin is an EF-hand protein that confers the property of caffeine-activated intracellular Ca2+ release in nonmuscle cells by interacting with RyR2. To determine whether sorcin could improve the contractile function of the heart, we overexpressed sorcin in the heart of either normal or diabetic mice and in adult rat cardiomyocytes with an adenoviral gene transfer approach. Sorcin overexpression was associated with an increase in cardiac contractility of the normal heart and dramatically rescued the abnormal contractile function of the diabetic heart. These effects could be attributed to an improvement of the Ca2+ transients found in the cardiomyocyte after sorcin overexpression. Viral vector-mediated delivery of sorcin to cardiac myocytes is beneficial, resulting in improved contractile function in diabetic cardiomyopathy.

2005 ◽  
Vol 288 (5) ◽  
pp. H2342-H2354 ◽  
Author(s):  
Jianliang Song ◽  
Xue-Qian Zhang ◽  
Belinda A. Ahlers ◽  
Lois L. Carl ◽  
JuFang Wang ◽  
...  

Overexpression of phospholemman (PLM) in normal adult rat cardiac myocytes altered contractile function and cytosolic Ca2+ concentration ([Ca2+]i) homeostasis and inhibited Na+/Ca2+ exchanger (NCX1). In addition, PLM coimmunoprecipitated and colocalized with NCX1 in cardiac myocyte lysates. In this study, we evaluated whether the cytoplasmic domain of PLM is crucial in mediating its effects on contractility, [Ca2+]i transients, and NCX1 activity. Canine PLM or its derived mutants were overexpressed in adult rat myocytes by adenovirus-mediated gene transfer. Confocal immunofluorescence images using canine-specific PLM antibodies demonstrated that the exogenous PLM or its mutants were correctly targeted to sarcolemma, t-tubules, and intercalated discs, with little to none detected in intracellular compartments. Overexpression of canine PLM or its mutants did not affect expression of NCX1, sarco(endo)plasmic reticulum Ca2+-ATPase, Na+-K+-ATPase, and calsequestrin in adult rat myocytes. A COOH-terminal deletion mutant in which all four potential phosphorylation sites (Ser62, Ser63, Ser68, and Thr69) were deleted, a partial COOH-terminal deletion mutant in which Ser68 and Thr69 were deleted, and a mutant in which all four potential phosphorylation sites were changed to alanine all lost wild-type PLM's ability to modulate cardiac myocyte contractility. These observations suggest the importance of Ser68 or Thr69 in mediating PLM's effect on cardiac contractility. Focusing on Ser68, the Ser68 to Glu mutant was fully effective, the Ser63 to Ala (leaving Ser68 intact) mutant was partially effective, and the Ser68 to Ala mutant was completely ineffective in modulating cardiac contractility, [Ca2+]i transients, and NCX1 currents. Both the Ser63 to Ala and Ser68 to Ala mutants, as well as PLM, were able to coimmunoprecipitate NCX1. It is known that Ser68 in PLM is phosphorylated by both protein kinases A and C. We conclude that regulation of cardiac contractility, [Ca2+]i transients, and NCX1 activity by PLM is critically dependent on Ser68. We suggest that PLM phosphorylation at Ser68 may be involved in cAMP- and/or protein kinase C-dependent regulation of cardiac contractility.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Wen Zhao ◽  
Xiaojing Shi ◽  
Wenjuan Zhou ◽  
Huimin Wang ◽  
Xuepeng Geng ◽  
...  

Peroxiredoxin II (prxII), a cytosolic form of the anti-oxidant peroxiredoxin family, was recently found to be decreased in failing human hearts. Interestingly, in hyperdynamic hearts of two genetically modified mouse models with: a) phospholamban ablation; and b) overexpression of the active inhibitor-1 of protein phosphatase 1, the levels of this cellular peroxidase (prxII) were markedly increased. Acute overexpression of prxII by adenoviral-delivery in adult rat cardiomyocytes (Ad-prxII) was associated with decreases in the basal rates of contraction and relaxation, as well as calcium kinetics. Accordingly, Ad-prxII-AS infected cardiomyocytes exhibited enhanced contractile parameters and Ca-kinetics. The depressed or increased contractility by Ad-prxII or Ad-prxII-AS was associated with parallel decreases or increases in phosphorylation of phospholamban (Ser16 and Thr17). To determine the in vivo effects of prxII on cardiac contractility, three transgenic lines (TG) with 2-3 fold cardiac-specific overexpression of prxII were generated and their cardiac morphologic and functional phenotypes were characterized. The TG mice exhibited no alterations in cardiac pathology or morphology up to 4 months of age. However, langendorf perfusions revealed that cardiac contractility, including the rates of contraction and relaxation (±dp/dtmax) as well as the left ventricular end systolic pressure (LVESP), were significantly depressed in TG mice (to 75, 76 and 63%, respectively), compared to WTs (100%). The depressed function was not associated with any alterations in the expression levels of key SR calcium handling proteins: SERCA2, total phospholamban, calsequestrin and ryanodine receptor. However, the levels of the phosphorylated PLN at Ser16 were found to be reduced to 50% in the TG mice, compared to WTs. These findings indicate that prxII, an anti-oxidant protein, may regulate basal cardiac contractile performance in vivo through phospholamban phosphorylation.


2004 ◽  
Vol 382 (2) ◽  
pp. 411-416 ◽  
Author(s):  
Katrina A. BICKNELL ◽  
Carmen H. COXON ◽  
Gavin BROOKS

Repair of the mature mammalian myocardium following injury is impaired by the inability of the majority of cardiomyocytes to undergo cell division. We show that overexpression of the cyclin B1–CDC2 (cell division cycle 2 kinase) complex re-initiates cell division in adult cardiomyocytes. Thus strategies targeting the cyclin B1–CDC2 complex might re-initiate cell division in mature cardiomyocytes in vivo and facilitate myocardial regeneration following injury.


2011 ◽  
Vol 668 (1-2) ◽  
pp. 201-207 ◽  
Author(s):  
Lingling Qi ◽  
Huanjun Pan ◽  
Dongye Li ◽  
Fang Fang ◽  
Dan Chen ◽  
...  

2016 ◽  
Vol 113 (45) ◽  
pp. E7116-E7125 ◽  
Author(s):  
Walter E. Knight ◽  
Si Chen ◽  
Yishuai Zhang ◽  
Masayoshi Oikawa ◽  
Meiping Wu ◽  
...  

Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance.


2012 ◽  
Vol 303 (3) ◽  
pp. H353-H367 ◽  
Author(s):  
Thomas J. LaRocca ◽  
Frank Fabris ◽  
Jiqiu Chen ◽  
Daniel Benhayon ◽  
Shihong Zhang ◽  
...  

Diabetic cardiomyopathy is characterized, in part, by calcium handling imbalances associated with ventricular dysfunction. The cardiac Na+/Ca2+ exchanger 1 (NCX1) has been implicated as a compensatory mechanism in response to reduced contractility in the heart; however, its role in diabetic cardiomyopathy remains unknown. We aimed to fully characterize the Akitains2 murine model of type 1 diabetes through assessing cardiac function and NCX1 regulation. The CXCL12/CXCR4 chemokine axis is well described in its cardioprotective effects via progenitor cell recruitment postacute myocardial infarction; however, it also functions in regulating calcium dependent processes in the cardiac myocyte. We therefore investigated the potential impact of CXCR4 in diabetic cardiomyopathy. Cardiac performance in the Akitains2 mouse was monitored using echocardiography and in vivo pressure-volume analysis. The Akitains2 mouse is protected against ventricular systolic failure evident at both 5 and 12 mo of age. However, the preserved contractility was associated with a decreased sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a)/phospholamban ratio and increased NCX1 content. Direct myocardial injection of adenovirus encoding anti-sense NCX1 significantly decreased NCX1 expression and induced systolic failure in the Akitains2 mouse. CXCL12 and CXCR4 were both upregulated in the Akitains2 heart, along with an increase in IκB-α and NF-κB p65 phosphorylation. We demonstrated that CXCR4 activation upregulates NCX1 expression through a NF-κB-dependent signaling pathway in the cardiac myocyte. In conclusion, the Akitains2 type 1 diabetic model is protected against systolic failure due to increased NCX1 expression. In addition, our studies reveal a novel role of CXCR4 in the diabetic heart by regulating NCX1 expression via a NF-κB-dependent mechanism.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Andrezza M. Barbosa ◽  
José F. Sarmento-Neto ◽  
José E. R. Menezes Filho ◽  
Itamar C. G. Jesus ◽  
Diego S. Souza ◽  
...  

Background. Cardiomyopathies remain among the leading causes of death worldwide, despite all efforts and important advances in the development of cardiovascular therapeutics, demonstrating the need for new solutions. Herein, we describe the effects of the redox-active therapeutic Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, AEOL10113, BMX-010 (MnTE-2-PyP5+), on rat heart as an entry to new strategies to circumvent cardiomyopathies. Methods. Wistar rats weighing 250-300 g were used in both in vitro and in vivo experiments, to analyze intracellular Ca2+ dynamics, L-type Ca2+ currents, Ca2+ spark frequency, intracellular reactive oxygen species (ROS) levels, and cardiomyocyte and cardiac contractility, in control and MnTE-2-PyP5+-treated cells, hearts, or animals. Cells and hearts were treated with 20 μM MnTE-2-PyP5+ and animals with 1 mg/kg, i.p. daily. Additionally, we performed electrocardiographic and echocardiographic analysis. Results. Using isolated rat cardiomyocytes, we observed that MnTE-2-PyP5+ reduced intracellular Ca2+ transient amplitude, without altering cell contractility. Whereas MnTE-2-PyP5+ did not alter basal ROS levels, it was efficient in modulating cardiomyocyte redox state under stress conditions; MnTE-2-PyP5+ reduced Ca2+ spark frequency and increased sarcoplasmic reticulum (SR) Ca2+ load. Accordingly, analysis of isolated perfused rat hearts showed that MnTE-2-PyP5+ preserves cardiac function, increases SR Ca2+ load, and reduces arrhythmia index, indicating an antiarrhythmic effect. In vivo experiments showed that MnTE-2-PyP5+ treatment increased Ca2+ transient, preserved cardiac ejection fraction, and reduced arrhythmia index and duration. MnTE-2-PyP5+ was effective both to prevent and to treat cardiac arrhythmias. Conclusion. MnTE-2-PyP5+ prevents and treats cardiac arrhythmias in rats. In contrast to most antiarrhythmic drugs, MnTE-2-PyP5+ preserves cardiac contractile function, arising, thus, as a prospective therapeutic for improvement of cardiac arrhythmia treatment.


2009 ◽  
Vol 296 (4) ◽  
pp. H1069-H1079 ◽  
Author(s):  
Halvor K. Mørk ◽  
Ivar Sjaastad ◽  
Ole M. Sejersted ◽  
William E. Louch

Deterioration of cardiac contractility during congestive heart failure (CHF) is believed to involve decreased function of individual cardiomyocytes and may include reductions in contraction magnitude and/or kinetics. We examined the progression of in vivo and in vitro alterations in contractile function in CHF mice and investigated underlying alterations in Ca2+ homeostasis. Following induction of myocardial infarction (MI), mice with CHF were examined at early (1 wk post-MI) and chronic (10 wk post-MI) stages of disease development. Sham-operated mice served as controls. Global and local left ventricle function were assessed by echocardiography in sedated animals (∼2% isoflurane). Excitation-contraction coupling was examined in cardiomyocytes isolated from the viable septum. CHF progression between 1 and 10 wk post-MI resulted in increased mortality, development of hypertrophy, and deterioration of global left ventricular function. Local function in the noninfarcted myocardium also declined, as posterior wall shortening velocity was reduced in chronic CHF (1.2 ± 0.1 vs. 1.9 ± 0.2 cm/s in sham). Parallel alterations occurred in isolated cardiomyocytes since contraction and Ca2+ transient time to peak values were prolonged in chronic CHF (115 ± 6 and 158 ± 11% sham values, respectively). Surprisingly, contraction and Ca2+ transient magnitudes in CHF were larger than sham values at both time points, resulting from increased sarcoplasmic reticulum Ca2+ content and greater Ca2+ influx via L-type channels. We conclude that, in mice with CHF following myocardial infarction, declining myocardial function involves slowing of cardiomyocyte contraction without reduction in contraction magnitude. Corresponding alterations in Ca2+ transients suggest that slowing of Ca2+ release is a critical mediator of CHF progression.


1994 ◽  
Vol 267 (5) ◽  
pp. H1745-H1752 ◽  
Author(s):  
S. Tao ◽  
T. M. McKenna

In vivo endotoxin treatment causes a nitric oxide-mediated hypocontractility in cardiac myocytes. The objective of this study was to assess whether in vitro endotoxin exposure confers similar contractile defects in adult rat cardiac cells. We found that incubation of cardiac myocytes for 6 h with 10-100 ng/ml endotoxin resulted in progressive time- and protein synthesis-dependent decreases in electrically stimulated twitch magnitudes and increased contraction and relaxation times. Serum was not required for the endotoxin-induced hypocontractility. The endotoxin-induced defect in contractility was reversed over time, since myocytes continuously incubated with endotoxin for 24 h exhibited normal contractility; in contrast, control cells incubated for 18 h were suppressed by a subsequent 6-h exposure to endotoxin. Nitric oxide synthase activity was increased after a 6-h endotoxin treatment as evidenced by a dose-dependent enhanced conversion of [3H]arginine to [3H]citrulline and by elevated guanosine 3',5'-cyclic monophosphate levels. Superfusion of endotoxin-incubated cells with N omega-nitro-L-arginine methyl ester restored contractile function, whereas superfusion with L-arginine reimposed abnormal contractility. Naive myocytes superfused with 8-bromoguanosine 3',5'-cyclic monophosphate expressed contractile defects similar to those induced by endotoxin. These findings demonstrate that endotoxin has direct negative effects on cardiac cell contractile function and that induction of NO synthase activity is a primary intracellular mediator of the diminished contractility.


Sign in / Sign up

Export Citation Format

Share Document