scholarly journals PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

2016 ◽  
Vol 113 (45) ◽  
pp. E7116-E7125 ◽  
Author(s):  
Walter E. Knight ◽  
Si Chen ◽  
Yishuai Zhang ◽  
Masayoshi Oikawa ◽  
Meiping Wu ◽  
...  

Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance.

2004 ◽  
Vol 18 (3) ◽  
pp. 273-283 ◽  
Author(s):  
Hua Chen ◽  
Xueyin N. Huang ◽  
Alexandre F. R. Stewart ◽  
Jorge L. Sepulveda

Fibronectin (FN) is an extracellular matrix protein that binds to integrin receptors and couples cardiac myocytes to the basal lamina. Cardiac FN expression is elevated in models of pressure overload, and FN causes cultured cardiac myocytes to hypertrophy by a mechanism that has not been characterized in detail. In this study, we analyzed the gene expression changes induced by FN in purified rat neonatal ventricular myocytes using the Affymetrix RAE230A microarray, to understand how FN affects gene expression in cardiac myocytes and to separate the effects contributed by cardiac nonmyocytes in vivo. Pathway analysis using z-score statistics and comparison with a mouse model of cardiac hypertrophy revealed several pathways stimulated by FN in cardiac myocytes. In addition to the known cardiac myocyte hypertrophy markers, FN significantly induced metabolic pathways including virtually all of the enzymes of cholesterol biosynthesis, fatty acid biosynthesis, and the mitochondrial electron transport chain. FN also increased the expression of genes coding for ribosomal proteins, translation factors, and the ubiquitin-proteasome pathway. Interestingly, cardiac myocytes plated on FN showed elevated expression of the fibrosis-promoting peptides connective tissue growth factor (CTGF), WNT1 inducible signaling pathway protein 2 (WISP2), and secreted acidic cysteine-rich glycoprotein (SPARC). Our data complement in vivo studies and reveal several novel genes and pathways stimulated by FN, pointing to cardiac myocyte-specific mechanisms that lead to development of the hypertrophic phenotype.


2011 ◽  
Vol 301 (3) ◽  
pp. H984-H993 ◽  
Author(s):  
Eric E. Essick ◽  
Noriyuki Ouchi ◽  
Richard M. Wilson ◽  
Koji Ohashi ◽  
Joanna Ghobrial ◽  
...  

Reactive oxygen species (ROS) induce matrix metalloproteinase (MMP) activity that mediates hypertrophy and cardiac remodeling. Adiponectin (APN), an adipokine, modulates cardiac hypertrophy, but it is unknown if APN inhibits ROS-induced cardiomyocyte remodeling. We tested the hypothesis that APN ameliorates ROS-induced cardiomyocyte remodeling and investigated the mechanisms involved. Cultured adult rat ventricular myocytes (ARVM) were pretreated with recombinant APN (30 μg/ml, 18 h) followed by exposure to physiologic concentrations of H2O2 (1–200 μM). ARVM hypertrophy was measured by [3H]leucine incorporation and atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) gene expression by RT-PCR. MMP activity was assessed by in-gel zymography. ROS was induced with angiotensin (ANG)-II (3.2 mg·kg−1·day−1 for 14 days) in wild-type (WT) and APN-deficient (APN-KO) mice. Myocardial MMPs, tissue inhibitors of MMPs (TIMPs), p-AMPK, and p-ERK protein expression were determined. APN significantly decreased H2O2-induced cardiomyocyte hypertrophy by decreasing total protein, protein synthesis, ANF, and BNP expression. H2O2-induced MMP-9 and MMP-2 activities were also significantly diminished by APN. APN significantly increased p-AMPK in both nonstimulated and H2O2-treated ARVM. H2O2-induced p-ERK activity and NF-κB activity were both abrogated by APN pretreatment. ANG II significantly decreased myocardial p-AMPK and increased p-ERK expression in vivo in APN-KO vs. WT mice. ANG II infusion enhanced cardiac fibrosis and MMP-2-to-TIMP-2 and MMP-9-to-TIMP-1 ratios in APN-KO vs. WT mice. Thus APN inhibits ROS-induced cardiomyocyte remodeling by activating AMPK and inhibiting ERK signaling and NF-κB activity. Its effects on ROS and ultimately on MMP expression define the protective role of APN against ROS-induced cardiac remodeling.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Erik Blackwood ◽  
Donna Thuerauf ◽  
Lauren MacDonnell ◽  
Alina S Bilal ◽  
Chris C Glembotski

Introduction: Cardiac hypertrophy is associated with an increase in protein synthesis, which must coordinate with protein folding and degradation to allow for homeostatic growth without affecting the functional integrity of cardiac myocytes (i.e. proteostasis). There is a gap in our understanding of how proteostasis becomes imbalanced during chronic pathological hypertrophy. Hypothesis: The objective of this study to examine the mechanisms regulating the protein degradation aspect of proteostasis, ER associated degradation (ERAD), by focusing on the role in cardiac hypertrophy of the unique selenoprotein and functional initiator of the ERAD molecular machinery, VIMP, which is induced in cardiac pathology by the nodal proteostasis transcription factor, ATF6. Methods and Results: VIMP was increased in failing human and in mouse hearts subjected to TAC-induced heart failure in an ATF6-dependent manner. AAV9-shRNA-mediated VIMP knockdown in the heart dramatically suppressed cardiac hypertrophy and staved off decompensation and heart failure, while AAV9-mediated VIMP overexpression exacerbated cardiac decompensation in response to TAC, an effect not observed with overexpression of an ERAD-null mutant of VIMP. Unexpectedly, VIMP knockdown enhanced ERAD-mediated degradation of the cytosolic pro-hypertrophic kinase, serum/glucocorticoid-regulated kinase 1, SGK1. Furthermore, AAV9-mediated overexpression of SGK1 negated the beneficial effects of VIMP knockdown; knockdown of the SGK1-binding protein, GILZ enhanced ERAD-mediated degradation of SGK1 and blunted cardiac hypertrophy. A peptide inhibiting the SGK1-GILZ interaction enhanced the ERAD-mediated degradation of SGK1 and ameliorated agonist-induced cardiac myocyte hypertrophy. Conclusions: Here we studied ERAD for the first time in any organ, in vivo , finding that an ATF6-inducible selenoprotein, VIMP, regulates the ERAD-dependent degradation of SGK1, thus accelerating TAC-induced cardiac decompensation and heart failure.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
V Montiel ◽  
R Bella ◽  
L Michel ◽  
E Robinson ◽  
J.C Jonas ◽  
...  

Abstract Background Pathological remodeling of the myocardium has long been known to involve oxidant signaling, but so far, strategies using systemic anti-oxidants have generally failed to prevent it. Aquaporins are a family of transmembrane water channels with thirteen isoforms currently known. Some isoforms have been implicated in oxidant signaling. AQP1 is the most abundant aquaporin in cardiovascular tissues but its specific role in cardiac remodeling remains unknown. Purpose We tested the role of AQP1 as a key regulator of oxidant-mediated cardiac remodeling amenable to targeted pharmacological therapy. Methods We used mice with genetic deletion of Aqp1 (and wild-type littermate), as well as primary isolates from the same mice and human iPSC/Engineered Heart Tissue to test the role of AQP1 in pro-hypertrophic signaling. Human cardiac myocyte-specific (PCM1+) expression of AQP's and genes involved in hypertrophic remodeling was studied by RNAseq and bioinformatic GO pathway analysis. Results RNA sequencing from human cardiac myocytes revealed that the archetypal AQP1 is a major isoform. AQP1 expression correlates with the severity of hypertrophic remodeling in patients with aortic stenosis. The AQP1 channel was detected at the plasma membrane of human and mouse cardiac myocytes from hypertrophic hearts, where it colocalizes with the NADPH oxidase-2 (NOX2) and caveolin-3. We show that hydrogen peroxide (H2O2), produced extracellularly, is necessary for the hypertrophic response of isolated cardiac myocytes and that AQP1 facilitates the transmembrane transport of H2O2 through its water pore, resulting in activation of oxidant-sensitive kinases in cardiac myocytes. Structural analysis of the amino acid residues lining the water pore of AQP1 supports its permeation by H2O2. Deletion of Aqp1 or selective blockade of AQP1 intra-subunit pore (with Bacopaside II) inhibits H2O2 transport in mouse and human cells and rescues the myocyte hypertrophy in human induced pluripotent stem cell-derived engineered heart muscle. This protective effect is due to loss of transmembrane transport of H2O2, but not water, through the intra-subunit pore of AQP1. Treatment of mice with clinically-approved Bacopaside extract (CDRI08) inhibitor of AQP1 attenuates cardiac hypertrophy and fibrosis. Conclusion We provide the first demonstration that AQP1 functions as an aqua-peroxiporin in primary rodent and human cardiac parenchymal cells. We show that cardiac hypertrophy is mediated by the transmembrane transport of H2O2 through the AQP1 water channel. Our studies open the way to complement the therapeutic armamentarium with specific blockers of AQP1 for the prevention of adverse remodeling in many cardiovascular diseases leading to heart failure. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): FRS-FNRS, Welbio


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
John E Baker ◽  
Jidong Su ◽  
Stacy Koprowski ◽  
Anuradha Dhanasekaran ◽  
Tom P Aufderheide ◽  
...  

Thrombopoietin confers immediate protection against injury caused by ischemia/reperfusion in the rat heart at a dose that does not increase platelet levels. Eltrombopag is a small molecule agonist of the thrombopoietin receptor; the physiological target of thrombopoietin. Administration of thrombopoietin and eltrombopag result in a dose- and time-dependent increase in platelet counts in patients with thrombocytopenia. However, the ability of eltrombopag and thrombopoietin to immediately protect human cardiac myocytes against injury and the mechanisms underlying myocyte protection are not known. Human cardiac myocytes (7500 cells, n=10/group) were treated with eltrombopag (0.1- 30.0 μM) or thrombopoietin ( 0.1 - 30.0 ng/ml) and then subjected to 5 hours of hypoxia (95% N 2 /5%CO 2 ) and 16 hours of reoxygenation to determine their ability to confer resistance to necrotic and apoptotic myocardial injury . The thrombopoietin receptor (c-Mpl) was detected in unstimulated human cardiac myocytes by western blotting. Eltrombopag and thrombopoietin confer immediate protection to human cardiac myocytes against injury from hypoxia/reoxygenation by decreasing necrotic and apoptotic cell death in a concentration-dependent manner with an optimal concentration of 3 μM for eltrombopag and 1.0 ng/ml for thrombopoietin. The extent of protection conferred to cardiac myocytes with eltrombopag is equivalent to that of thrombopoietin. Eltrombopag and thrombopoietin activate multiple pro-survival pathways; inhibition of JAK-2 (AG-490, 10 μM), p38 MAPK (SB203580, 10 μM), p44/42 MAPK (PD98059, 10 μM), Akt/PI 3 kinase (Wortmannin, 100 nM), and src kinase (PP1, 20 μM) prior to and during hypoxia abolished cardiac myocyte protection by eltrombopag and thrombopoietin. These inhibitors had no effect on hypoxia/reoxygenation injury in myocytes when used alone. Eltrombopag and thrombopoietin may represent important and potent agents for immediately and substantially increasing protection of human cardiac myocytes, and may offer long-lasting benefit through activation of pro-survival pathways during ischemia.


2021 ◽  
Author(s):  
Jun Sun ◽  
Wei Wu ◽  
Xiaofeng Tang ◽  
Feifei Zhang ◽  
Cheng Ju ◽  
...  

Background: WT161, as a selective HDAC6 inhibitor, has been shown to play anti-tumor effects on several kinds of cancers. The aim of this study is to explore the roles of WT161 in osteosarcoma and its underlying mechanisms. Methods: The anti-proliferative effect of WT161 on osteosarcoma cells was examined using MTT assay and colony formation assay. Cell apoptosis was analyzed using flow cytometer. The synergistic effect was evaluated by isobologram analysis using CompuSyn software. The osteosarcoma xenograft models were established to evaluate the anti-proliferative effect of WT161 in vivo. Results: WT161 suppressed the cell growth and induced apoptosis of osteosarcoma cells in a dose- and time-dependent manner. Mechanistically, we found that WT161 treatment obviously increased the protein level of PTEN and decreased the phosphorylation level of AKT. More importantly, WT161 show synergistic inhibition with 5-FU on osteosarcoma cells in vitro and in vivo. Conclusions: These results indicate that WT161 inhibits the growth of osteosarcoma through PTEN and has a synergistic efficiency with 5-FU.


2020 ◽  
Author(s):  
Jun Sun ◽  
Xiaofeng Tang ◽  
Feifei Zhang ◽  
Cheng Ju ◽  
Renfeng Liu ◽  
...  

Abstract Background: WT161 as a new selective HDAC6 inhibitor has been shown to play anti-tumor effects on multiple myeloma and breast cancer. However, the role of WT161 in osteosarcoma remains unclear. The aim of this study is to explore the role of WT161 in osteosarcoma and its underlying mechanisms.Methods: The anti-proliferative effect of WT161 on osteosarcoma cells was examined using MTT assay and colony formation assay. Cell apoptosis was analyzed using flow cytometer. The synergistic effect was evaluated by isobologram analysis using CompuSyn software. The osteosarcoma xenograft models were esatablished to evaluate the anti-proliferative effect of WT161 in vivo.Results: WT161 suppressed the cell growth and induced apoptosis of osteosarcoma cells in a dose- and time-dependent manner. Mechanistically, we found that WT161 treatment obviously increased the protein expression level of PTEN and decreased the phosphorylation level of AKT. Notably, WT161 shows synergistically inhibitory effects on osteosarcoma cell combined with 5-FU. Animal experiment results show WT161 inhibits the growth of osteosarcoma tumor and further illustrates that WT161 and 5-FU have a synergistic efficiency in osteosarcoma.Conclusions: These results indicate that WT161 inhibiting the growth of osteosarcoma through PTEN and has a synergistic efficiency with 5-FU.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Luis Gonano ◽  
Malena Morell ◽  
Juan I Burgos ◽  
Martin Vila Petroff

Cardiac myocyte swelling occurs in multiple pathological situations and in particular contributes to the deleterious effects of ischemia and reperfusion by promoting contractile dysfunction. We investigated whether hypotonic swelling promotes nitric oxide (NO) release in cardiac myocytes and if so, whether it impacts on swelling induced contractile dysfunction. Perfusing rat cardiac myocytes, loaded with the NO sensor DAF-FM, with a hypotonic solution (HS; 217 mOsm), increased cell volume, reduced myocyte contraction and Ca2+ transient amplitude and significantly increased DAF-FM fluorescence. When cells were exposed to the HS supplemented with 2.5 mM of the NO synthase inhibitor L-NAME, cell swelling occurred in the absence of NO release. Swelling-induced NO release was also prevented by the NOS1 inhibitor, Nitroguanidine. In addition, Colchicine (an inhibitor of microtubule polymerization) prevented the increase in DAF-FM fluorescence induced by HS indicating that microtubule integrity is necessary for swelling-induced NO release. The swelling-induced negative inotropic effect was exacerbated in the presence of either L-NAME, Nitroguandine or the guanylate cyclase inhibitor, ODQ, suggesting that NOS1-derived NO provides contractile support via a GMP-dependent mechanism. Indeed, ODQ reduced Ca2+ wave velocity and the HS-induced increment in ryanodine receptor (RyR2) phosphorylation at site Ser2808 suggesting that in the context of hypotonic swelling, cGMP may contribute to preserve contractile function by enhancing SR Ca2+ release. Our findings suggest a novel mechanism for NO release in cardiac myocytes with putative pathophysiological relevance in the context of ischemia and reperfusion, where it may be cardioprotective by reducing the extent of contractile dysfunction associated with hypotonic swelling.


1992 ◽  
Vol 262 (2) ◽  
pp. H590-H597 ◽  
Author(s):  
R. J. Robbins ◽  
J. L. Swain

Protooncogenes such as c-myc have been implicated in the transduction of growth signals in the cardiac myocyte. We examined whether increases in c-myc expression occur in murine heart in vivo as a generalized response to the pharmacological stimulation of myocyte growth. Both triiodothyronine (T3) and the beta-adrenergic agonist isoproterenol were demonstrated to induce a rapid and transient increase in cardiac c-myc mRNA abundance, which preceded an increase in cardiac mass. We then examined whether myocyte growth could be modulated by selectively altering cardiac c-myc expression. The model system used was a strain of transgenic mice exhibiting a 20-fold increase in cardiac c-myc expression. Although in nontransgenic mice the administration of T3 and isoproterenol resulted in similar increases in cardiac mass, in transgenic mice the degree of myocardial growth induced with T3 was significantly greater than that induced with isoproterenol (P less than 0.001). This study demonstrates that increasing the basal expression of c-myc in cardiac myocytes alters the growth response of the heart in vivo to certain hypertrophic stimuli and implicates the c-myc protooncogene in the transduction of selective hypertrophic growth signals in differentiated cardiac myocytes.


Sign in / Sign up

Export Citation Format

Share Document