H2O2 activates redox- and 4-aminopyridine-sensitive Kv channels in coronary vascular smooth muscle

2007 ◽  
Vol 292 (3) ◽  
pp. H1404-H1411 ◽  
Author(s):  
Paul A. Rogers ◽  
William M. Chilian ◽  
Ian N. Bratz ◽  
Robert M. Bryan ◽  
Gregory M. Dick

Previously, we demonstrated that coronary vasodilation in response to hydrogen peroxide (H2O2) is attenuated by 4-aminopyridine (4-AP), an inhibitor of voltage-gated K+ (KV) channels. Using whole cell patch-clamp techniques, we tested the hypothesis that H2O2 increases K+ current in coronary artery smooth muscle cells. H2O2 increased K+ current in a concentration-dependent manner (increases of 14 ± 3 and 43 ± 4% at 0 mV with 1 and 10 mM H2O2, respectively). H2O2 increased a conductance that was half-activated at −18 ± 1 mV and half-inactivated at −36 ± 2 mV. H2O2 increased current amplitude; however, the voltages of half activation and inactivation were not altered. Dithiothreitol, a thiol reductant, reversed the effect of H2O2 on K+ current and significantly shifted the voltage of half-activation to −10 ± 1 mV. N-ethylmaleimide, a thiol-alkylating agent, blocked the effect of H2O2 to increase K+ current. Neither tetraethylammonium (1 mM) nor iberiotoxin (100 nM), antagonists of Ca2+-activated K+ channels, blocked the effect of H2O2 to increase K+ current. In contrast, 3 mM 4-AP completely blocked the effect of H2O2 to increase K+ current. These findings lead us to conclude that H2O2 increases the activity of 4-AP-sensitive KV channels. Furthermore, our data support the idea that 4-AP-sensitive KV channels are redox sensitive and contribute to H2O2-induced coronary vasodilation.

2003 ◽  
Vol 284 (2) ◽  
pp. C294-C301 ◽  
Author(s):  
Ashok K. Grover ◽  
Sue E. Samson ◽  
Sarah Robinson ◽  
Chiu Yin Kwan

Peroxynitrite generated in arteries from superoxide and NO may damage Ca2+ pumps. Here, we report the effects of peroxynitrite on ATP-dependent azide-insensitive uptake of Ca2+ into pig coronary artery vesicular membrane fractions F2 [enriched in plasma membrane (PM)] and F3 [enriched in sarcoplasmic reticulum (SR)]. Membranes were pretreated with peroxynitrite and then with DTT to quench this agent. This pretreatment inhibited Ca2+ uptake in a peroxynitrite concentration-dependent manner, but the effect was more severe in F3 than in F2. The inhibition was thus not overcome by excess DTT used to quench peroxynitrite and was not affected if catalase, SOD, or mannitol was added along with peroxynitrite. Such damage to the pump protein would be difficult to repair if produced during ischemia-reperfusion. The acylphosphates formed with ATP in F3 corresponded mainly to the SR Ca2+ pump (110 kDa), but in F2 both PM (140 kDa) and 110-kDa bands were observed. Peroxynitrite treatment of F2 inhibited only the 110-kDa band. Inhibition of Ca2+ uptake and acylphosphate formation from ATP correlated well in peroxynitrite-treated F3 samples. However, inhibition of acylphosphates from orthophosphate (reverse reaction of the pump) was slightly poorer. Peroxynitrite treatment also covalently cross-linked the pump protein, yielding no dimers but only larger oligomers. In contrast, cross-linking of the SR Ca2+ pump in skeletal and cardiac muscles gives dimers as the first oligomers. Therefore, we speculate that SERCA2 has a different quaternary structure in the coronary artery smooth muscle.


Author(s):  
Justyna Gąsiorowska ◽  
Andrzej Teisseyre ◽  
Anna Uryga ◽  
Krystyna Michalak

AbstractUsing the whole-cell patch-clamp technique, we investigated the influence of 8-prenylnaringenin on the activity of the voltage-gated Kv1.3 potassium channels in the human leukemic T lymphocyte cell line Jurkat. 8-prenylnaringenin is a potent plant-derived phytoestrogen that has been found to inhibit cancer cell proliferation. The results show that it inhibited the Kv1.3 channels in a concentration-dependent manner. Complete inhibition occurred at concentrations higher than 10 μM. The inhibitory effect of 8-prenylnaringenin was reversible. It was accompanied by a significant acceleration of channel inactivation without any pronounced change in the activation rate. Of the naringenin derivatives tested to date, 8-prenylnaringenin is the most potent inhibitor of the Kv1.3 channels. The potency of the inhibition may be due to the presence of a prenyl group in the molecule of this flavonoid. The inhibition of the Kv1.3 channels might be involved in the antiproliferative and pro-apoptotic effects of 8-prenylnaringenin that have been observed in cancer cell lines expressing these channels.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
W Li ◽  
S.D Gao ◽  
B Hua ◽  
Q.B Liu ◽  
H.R Liu ◽  
...  

Abstract Background Voltage-gated K+ (Kv) channels in coronary artery smooth muscle cells (CSMCs), especially the major specific Kv1 subfamily, contribute to coronary artery vasodilation. Advanced glycation end products (AGEs) have been strongly implicated in diabetes-related cardiovascular complications. Our previous study showed AGEs can impair Kv channel-mediated coronary vasodilation by reducing Kv channel activity. However, its underlying mechanism remains unclear. Purpose Here, we used isolated rat small coronary arteries (RSCAs) and primary CSMCs to investigate the effect of AGEs on Kv channel-mediated coronary vasodilation and the possible involvement of peroxisome proliferators-activated receptor (PPAR)-γ pathway. Methods RSCAs and primary CSMCs were isolated, cultured and treated with bovine serum albumin (BSA), AGE-BSA, alagrebrium (ALA, AGE cross-linking breaker), pioglitazone (PIO) and/or GW9662, and then divided into the following groups: DMEM, BSA, AGE, AGE+ALA, AGE+PIO, and AGE+PIO+GW9662. Kv channel-mediated coronary vasodilation was analyzed using wire myograph. Histology and immunohistochemistry of RSCAs were performed. Western blot was used to detect the protein expression of RAGE, the major Kv1 channel subunits expressed in CSMCs (Kv1.2/1.5), PPAR-γ, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-2 (NOX-2). Results AGEs markedly reduced forskolin-induced Kv channel-mediated vasodilation of RSCAs by interacting with the receptor for AGEs (RAGE), and ALA or PIO significantly reversed this effect. In both RSCAs and primary CSMCs, AGEs decreased Kv1.2 and Kv1.5 channel protein expression, inhibited PPAR-γ expression, increased RAGE and NOX-2 expression. Treatment with ALA or PIO partially reversed the effects of AGEs on Kv1.2/Kv1.5 expression, accompanied by elevation of PPAR-γ level and diminished oxidative stress. Conclusion AGE/RAGE axis-induced inhibition of PPAR-γ pathway and enhancement of oxidative stress may contribute to AGEs-mediated Kv channel dysfunction and coronary vasodilation in RSCAs. Our results may provide new insights into developing therapeutic strategies to manage diabetic vasculature. Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Natural Science Foundation of China; Natural Science Foundation of Beijing (7172059)


2001 ◽  
Vol 281 (4) ◽  
pp. R1114-R1118 ◽  
Author(s):  
Tetsuro Shirasaka ◽  
Satoshi Miyahara ◽  
Takato Kunitake ◽  
Qing-Hua Jin ◽  
Kazuo Kato ◽  
...  

Orexins, also called hypocretins, are newly discovered hypothalamic peptides that are thought to be involved in various physiological functions. In spite of the fact that orexin receptors, especially orexin receptor 2, are abundant in the hypothalamic paraventricular nucleus (PVN), the effects of orexins on PVN neurons remain unknown. Using a whole cell patch-clamp recording technique, we investigated the effects of orexin-B on PVN neurons of rat brain slices. Bath application of orexin-B (0.01–1.0 μM) depolarized 80.8% of type 1 ( n = 26) and 79.2% of type 2 neurons tested ( n = 24) in the PVN in a concentration-dependent manner. The effects of orexin-B persisted in the presence of TTX (1 μM), indicating that these depolarizing effects were generated postsynaptically. Addition of Cd2+(1 mM) to artificial cerebrospinal fluid containing TTX (1 μM) significantly reduced the depolarizing effect in type 2 neurons. These results suggest that orexin-B has excitatory effects on the PVN neurons mediated via a depolarization of the membrane potential.


2018 ◽  
Vol 50 (4) ◽  
pp. 1301-1317 ◽  
Author(s):  
Hongmei Li ◽  
Xian Wang ◽  
Anlong Xu

Background/Aims: Approximately 10%-20% of patients with acute cardiovascular disease who have received coronary intervention suffer restenosis and high inflammation. The stent compound paclitaxel+hirudin was prepared for the treatment of post-intervention restenosis. This study aimed to explore the anti-inflammatory and anti-restenosis mechanisms of paclitaxel+hirudin with regard to the TLR4/MyD88/NF-κB pathway. Methods: Human coronary artery smooth muscle cells (HCASMCs) at 4-6 generations after in vitro culture were used as a model. Lipopolysaccharide (LPS) was used as an inducer to maximally activate the TLR4/MyD88/NF-κB inflammation pathway. After MyD88 knockdown and selective blocking of MyD88 degradation with epoxomicin, the effects of paclitaxel+hirudin stenting on key sites of the TLR4/MyD88/NF-κB pathway were detected using ELISA, Q-PCR, and western blot analysis. Results: LPS at 1 μg/mL for 48 h was the optimal modeling condition for inflammatory activation of HCASMCs. Paclitaxel+hirudin inhibited the levels of key proteins and the gene expression, except for that of the MyD88 gene, of the TLR4-MyD88 pathway. The trend of the effect of paclitaxel+hirudin on the pathway proteins was similar to that of MyD88 knockdown. After epoxomicin intervention, the inhibitory effects of paclitaxel+hirudin on the key genes and proteins of the TLR4-MyD88 pathway were significantly weakened, which even reached pre-intervention levels. Paclitaxel+hirudin affected the MyD88 protein in a dosage-dependent manner. Conclusion: The paclitaxel+hirudin compound promotes MyD88 degradation in the TLR4/MyD88/NF-κB pathway to reduce the activity of TLR4 and NF-κB p65 and to weaken the LPS-initiated inflammatory reactions of IL-1β, IL-6, and TNF-α.


2003 ◽  
Vol 99 (3) ◽  
pp. 646-651 ◽  
Author(s):  
Jingui Yu ◽  
Koji Ogawa ◽  
Yasuyuki Tokinaga ◽  
Yoshio Hatano

Background The Rho/Rho-kinase signaling pathway plays an important role in mediating Ca2+ sensitization of vascular smooth muscle. The effect of anesthetics on Rho/Rho-kinase-mediated vasoconstriction has not been determined to date. This study is designed to examine the possible inhibitory effects of sevoflurane on the Rho/Rho-kinase pathway by measuring guanosine 5'-[gamma-thio]triphosphate (GTP gamma S)-stimulated contraction and translocation of RhoA (one of the three Rho subtypes) and Rock-2 (one of the two Rho-kinase subtypes) from the cytosol to the membrane in rat aortic smooth muscle. Methods GTP gamma S-induced contraction of rat aortic endothelium-denuded rings was measured using an isometric force transducer, and GTP gamma S-stimulated membrane translocation of RhoA and Rock-2 in smooth muscle cells was detected with Western blotting in the presence and absence of sevoflurane. Results GTP gamma S (10(-4) m) induced a sustained contraction, which was significantly inhibited by the Rho-kinase inhibitor, Y27632 (3 x 10(-6) m). Before treatment with GTP gamma S, RhoA and Rock-2 were detected primarily in the cytosolic fraction. GTP gamma S (10(-4) m) stimulated the translocation of RhoA and Rock-2 from the cytosol to the membrane, which was sustained for more than 60 min. Sevoflurane (1.7, 3.4, and 5.1%) concentration dependently inhibited the GTP gamma S-induced constriction of rat aortic smooth muscle with a reduction of constriction of 52-75% (P < 0.01, n = 8), and attenuated the translocation of RhoA and Rock-2 by 31-66% and 34-78%, respectively (P < 0.05-0.01, respectively; n = 4). Conclusion The current findings show that sevoflurane depresses the GTP gamma S-stimulated contraction and translocation of both Rho and Rho-kinase from the cytosol in a concentration-dependent manner, indicating that sevoflurane is able to inhibit vasoconstriction mediated by the Rho/Rho-kinase pathway in rat aortic smooth muscle.


2000 ◽  
Vol 279 (6) ◽  
pp. H2898-H2907 ◽  
Author(s):  
Zhi-Wei Yang ◽  
Jun Wang ◽  
Tao Zheng ◽  
Bella T. Altura ◽  
Burton M. Altura

Removal of extracellular Ca2+ concentration ([Ca2+]o) and pretreatment of canine basilar arterial rings with either an antagonist of voltage-gated Ca2+ channels (verapamil), a selective antagonist of the sarcoplasmic reticulum Ca2+ pump [thapsigargin (TSG)], caffeine plus a specific antagonist of ryanodine-sensitive Ca2+ release (ryanodine), or ad- myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]- mediated Ca2+ release antagonist (heparin) markedly attenuates low extracellular Mg2+ concentration ([Mg2+]o)-induced contractions. Low [Mg2+]o-induced contractions are significantly inhibited by pretreatment of the vessels with Gö-6976 [a protein kinase C-α (PKC-α)- and PKC-βI-selective antagonist], bisindolylmaleimide I (Bis, a specific antagonist of PKC), and wortmannin or LY-294002 [selective antagonists of phosphatidylinositol-3 kinases (PI3Ks)]. These antagonists were also found to relax arterial contractions induced by low [Mg2+]o in a concentration-dependent manner. The absence of [Ca2+]o and preincubation of the cells with verapamil, TSG, heparin, or caffeine plus ryanodine markedly attenuates the transient and sustained elevations in the intracellular Ca2+ concentration ([Ca2+]i) induced by low-[Mg2+]o medium. Low [Mg2+]o-produced increases in [Ca2+]i are also suppressed markedly in the presence of Gö-6976, Bis, wortmannin, or LY-294002. The present study suggests that both Ca2+ influx through voltage-gated Ca2+ channels and Ca2+ release from intracellular stores [both Ins(1,4,5)P3sensitive and ryanodine sensitive] play important roles in low-[Mg2+]o medium-induced contractions of isolated canine basilar arteries. Such contractions are clearly associated with activation of PKC isoforms and PI3Ks.


2020 ◽  
Vol 178 (2) ◽  
pp. 302-310
Author(s):  
Jin Ryeol An ◽  
Mi Seon Seo ◽  
Hee Seok Jung ◽  
Ryeon Heo ◽  
Minji Kang ◽  
...  

Abstract Imipramine, a tricyclic antidepressant, is used in the treatment of depressive disorders. However, the effect of imipramine on vascular ion channels is unclear. Therefore, using a patch-clamp technique we examined the effect of imipramine on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells. Kv channels were inhibited by imipramine in a concentration-dependent manner, with an IC50 value of 5.55 ± 1.24 µM and a Hill coefficient of 0.73 ± 0.1. Application of imipramine shifted the steady-state activation curve in the positive direction, indicating that imipramine-induced inhibition of Kv channels was mediated by influencing the voltage sensors of the channels. The recovery time constants from Kv-channel inactivation were increased in the presence of imipramine. Furthermore, the application of train pulses (of 1 or 2 Hz) progressively augmented the imipramine-induced inhibition of Kv channels, suggesting that the inhibitory effect of imipramine is use (state) dependent. The magnitude of Kv current inhibition by imipramine was similar during the first, second, and third depolarizing pulses. These results indicate that imipramine-induced inhibition of Kv channels mainly occurs in the closed state. The imipramine-mediated inhibition of Kv channels was associated with the Kv1.5 channel, not the Kv2.1 or Kv7 channel. Inhibition of Kv channels by imipramine caused vasoconstriction. From these results, we conclude that imipramine inhibits vascular Kv channels in a concentration- and use (closed-state)-dependent manner by changing their gating properties regardless of its own function.


Sign in / Sign up

Export Citation Format

Share Document