Blockade of brain mineralocorticoid receptors or Na+ channels prevents sympathetic hyperactivity and improves cardiac function in rats post-MI

2005 ◽  
Vol 288 (5) ◽  
pp. H2491-H2497 ◽  
Author(s):  
Bing S. Huang ◽  
Frans H. H. Leenen

In rats post-myocardial infarction (MI), sympathetic hyperactivity can be prevented by blockade of brain mineralocorticoid receptors (MR). Stimulatory responses to central infusion of aldosterone can be blocked by benzamil and therefore appear to be mediated via Na+ channels, presumably epithelial Na+ channels (ENaC), in the brain. To evaluate this concept of endogenous mineralocorticoids in Wistar rats post-MI, we examined effects of blockade of MR and Na+ channels in the brain. At 3 days after coronary artery ligation, intracerebroventricular infusions were started with spironolactone (400 ng·kg−1·h−1) or its vehicle, or with benzamil (4 μg·kg−1·h−1) or its vehicle, using osmotic minipumps. Rats with sham ligation served as control. After 4 wk, in conscious rats, mean arterial pressure, heart rate, and renal sympathetic nerve activity were recorded at rest and in response to air-jet stress, intracerebroventricular injection of the α2-adrenoceptor agonist guanabenz, and intravenous infusion of phenylephrine and nitroprusside for baroreflex function. MI size was similar among the four groups of rats (∼31%). In rats treated post-MI with vehicles, cardiac function was decreased, sympathetic reactivity was enhanced, and baroreflex function was impaired. Blockade of brain Na+ channels or brain MR similarly prevented sympathetic hyperactivity and impairment of baroreflex function and improved cardiac function. These findings suggest that in rats post-MI, increased binding of endogenous agonists to MR increases ENaC activity in the brain and thereby leads to sympathetic hyperactivity and progressive left ventricular dysfunction.

1999 ◽  
Vol 276 (5) ◽  
pp. H1608-H1615 ◽  
Author(s):  
Weiguo Zhang ◽  
Bing S. Huang ◽  
Frans H. H. Leenen

Blockade of brain “ouabain” prevents the sympathetic hyperactivity and impairment of baroreflex function in rats with congestive heart failure (CHF). Because brain “ouabain” may act by activating the brain renin-angiotensin system (RAS), the aim of the present study was to assess whether chronic treatment with the AT1-receptor blocker losartan given centrally normalizes the sympathetic hyperactivity and impairment of baroreflex function in Wistar rats with CHF postmyocardial infarction (MI). After left coronary artery ligation (2 or 6 wk), rats received either intracerebroventricular losartan (1 mg ⋅ kg−1 ⋅ day−1, CHF-Los) or vehicle (CHF-Veh) by osmotic minipumps. To assess possible peripheral effects of intracerebroventricular losartan, one set of CHF rats received the same rate of losartan subcutaneously. Sham-operated rats served as control. After 2 wk of treatment, mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) at rest and in response to air-jet stress and intracerebroventricular injection of the α2-adrenoceptor-agonist guanabenz were measured in conscious animals. Arterial baroreflex function was evaluated by ramp changes in MAP. Compared with sham groups, CHF-Veh groups showed impaired arterial baroreflex control of HR and RSNA, increased sympathoexcitatory and pressor responses to air-jet stress, and increased sympathoinhibitory and hypotensive responses to guanabenz. The latter is consistent with decreased activity in sympathoinhibitory pathways. Chronic intracerebroventricular infusion of losartan largely normalized these abnormalities. In CHF rats, the same rate of infusion of losartan subcutaneously was ineffective. In sham-operated rats, losartan intracerebroventricularly or subcutaneously did not affect sympathetic activity. We conclude that the chronic increase in sympathoexcitation, decrease in sympathoinhibition, and desensitized baroreflex function in CHF all appear to depend on the brain RAS, since this whole pattern of changes can be normalized by chronic central AT1-receptor blockade with losartan.


1999 ◽  
Vol 78 (1) ◽  
pp. 45-53
Author(s):  
Bing S Huang ◽  
Baoxue Yuan ◽  
Frans HH Leenen

In rats with congestive heart failure (CHF) post myocardial infarction (MI) acute blockade of brain "ouabain" reverses sympathetic hyperactivity and chronic blockade prevents the desensitization of baroreflex function. This study was conducted to determine: i) if chronic blockade of brain "ouabain" maintains normal sympathetic reactivity; andii) if acute baroreflex resetting (another parameter of baroreflex function) also becomes impaired, and if so, does brain "ouabain" contribute to impairment in acute baroreflex resetting. CHF post MI was induced by acute coronary artery ligation in Wistar rats. Animals were treated with 200 µg·day-1 i.c.v. or i.v. Fab fragments (which bind brain "ouabain" with high affinity), or treated with 200 µg·day-1 i.c.v. gamma-globulins (control group). The length of treatment was 0.5-8 weeks or 4-8 weeks post MI. At 8 weeks mean arterial pressure (MAP), central venous pressure (CVP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in concious rats at rest and in response to: i) air-jet stress, ii) i.c.v. guanabenz (an α2-adrenoceptor agonist), and iii) a 30 min i.v. infusion of nitroprusside (NP). Excitatory responses to air stress and inhibitory responses to guanabenz of MAP, HR, and RSNA were significantly enhanced in rats with CHF versus the sham-operated treated group. This enhancement was prevented in the CHF group treated with i.c.v., but not i.v., Fab. Nitroprusside induced a sustained decrease in MAP (~ 25 mmHg) and a transient decrease in CVP. Heart rate and RSNA increased significantly within 1 min of beginning the infusion. The peak increases as well as the product of changes in MAP-HR and RSNA-HR were significantly smaller in rats with CHF treated with gamma-globulins versus sham rats and versus CHF rats treated with i.c.v. Fab. In sham-operated rats and CHF rats treated with i.c.v. Fab, RSNA and HR began to decrease within 3-4 min of beginning the NP infusion and had returned to baseline by 20 min. In contrast, RSNA and HR remained increased throughout the infusion in the CHF rats treated with gamma-globulins. These data indicate that in rats with CHF acute resetting of the arterial baroreflex in response to a lower BP becomes impaired, and chronic blockade of brain "ouabain" prevents both this change in baroreflex resetting as well as sympathetic hyperactivity.Key words: heart failure, acute baroreflex resetting, sympathetic hyperactivity, nitroprusside.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Adolfo G Mauro ◽  
Donatas Kraskauskas ◽  
Bassem M Mohammed ◽  
Bernard J Fisher ◽  
Eleonora Mezzaroma ◽  
...  

Introduction: L-gulonolactone oxidase (Gulo) is the rate limiting enzyme for Vitamin C (VitC) biosynthesis. Humans rely on dietary VitC for collagen synthesis, extracellular matrix formation, and tissue regeneration. VitC deficiency is an unrecognized condition and its role in cardiac homeostasis and post-acute myocardial infarction (AMI) remodeling is unknown. Hypothesis: Low levels of VitC impair cardiac function and tissue repair following AMI. Methods: Adult male Gulo -/- knockout mice (C57BL6 background, N=8) and control C57BL (N=8), which are able to synthesize VitC were used. VitC deficiency was maintained supplying low levels of VitC (30mg/l) to Gulo -/- mice in drinking water. Mice underwent M-mode and Doppler echocardiography to measure left ventricular (LV) diameters and wall thicknesses, fractional shortening (FS), E and A waves, E/A ratio, isovolumetric relaxation time (IRT) and myocardial performance index (MPI). Experimental AMI was induced by coronary artery ligation for 7 days. An additional group of Gulo -/- were mice supplemented with physiological levels of VitC (330 mg/l) and underwent AMI. Results: VitC deficient Gulo -/- mice exhibited significantly reduced LV wall thicknesses, reduced FS, and impaired diastolic function, measured as significantly reduced E/A ratio and longer IRT (Panel A, B & C). Following AMI, 100% (8/8) of deficient Gulo -/- mice died within 5 days. Supplementation with physiological levels of VitC significantly improved survival after AMI (Panel D). Conclusion: VitC deficiency impairs systolic and diastolic function. Moreover, VitC is critical for the post-AMI survival.


2003 ◽  
Vol 284 (3) ◽  
pp. H903-H910 ◽  
Author(s):  
William P. Magee ◽  
Gayatri Deshmukh ◽  
Michael P. Deninno ◽  
Jill C. Sutt ◽  
Justin G. Chapman ◽  
...  

KB-R7943 and SEA0400 are Na+/Ca2+ exchanger (NCX) inhibitors with differing potency and selectivity. The cardioprotective efficacy of these NCX inhibitors was examined in isolated rabbit hearts (Langendorff perfused) subjected to regional ischemia (coronary artery ligation) and reperfusion. KB-R7943 and SEA0400 elicited concentration-dependent reductions in infarct size (SEA0400 EC50: 5.7 nM). SEA0400 was more efficacious than KB-R7943 (reduction in infarct size at 1 μM: SEA0400, 75%; KB-R7943, 40%). Treatment with either inhibitor yielded similar reductions in infarct size whether administered before or after regional ischemia. SEA0400 (1 μM) improved postischemic recovery of function (±dP/d t), whereas KB-R7943 impaired cardiac function at ≥1 μM. At 5–20 μM, KBR-7943 elicited rapid and profound depressions of heart rate, left ventricular developed pressure, and ±dP/d t. Thus the ability of KB-R7943 to provide cardioprotection is modest and limited by negative effects on cardiac function, whereas the more selective NCX inhibitor SEA0400 elicits marked reductions in myocardial ischemic injury and improved ±dP/d t. NCX inhibition represents an attractive approach for achieving clinical cardioprotection.


Author(s):  
Dennis Discher ◽  
Adam Engler

Cellular therapy for myocardial injury has improved ventricular function in both animal and clinical studies, though the mechanism of benefit is unclear. This study was undertaken to examine the effects of cellular injection after infarction on myocardial elasticity. Coronary artery ligation of Lewis rats was followed by direct injection of human mesenchymal stem cells (MSC) into the acutely ischemic myocardium. Two weeks post-infarct, myocardial elasticity was mapped by atomic force microscopy. MSC-injected hearts near the infarct region were two-fold stiffer than myocardium from non-infarcted animals but softer than myocardium from vehicle-treated infarcted animals. After eight weeks, the following variables were evaluated: MSC engraftment and left ventricular geometry by histologic methods; cardiac function with a pressure-volume conductance catheter; myocardial fibrosis by Masson trichrome staining; vascularity by immunohistochemistry; and apoptosis by TUNEL assay. The human cells engrafted and expressed a cardiomyocyte protein but stopped short of full differentiation and did not stimulate significant angiogenesis. MSC-injected hearts showed significantly less fibrosis than controls, as well as less left ventricular dilation, reduced apoptosis, increased myocardial thickness, and preservation of systolic and diastolic cardiac function. In summary, MSC injection after myocardial infarction did not regenerate contracting cardiomyocytes but reduced the stiffness of the subsequent scar and attenuated post-infarction remodeling, preserving some cardiac function. Improving scarred heart muscle compliance could be a functional benefit of cellular cardiomyoplasty.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Patrick Farahmand ◽  
Richard D Weisel ◽  
Philippe Menasche ◽  
Ren-Ke Li

Background: The inability of skeletal myoblasts to transdifferentiate into cardiomyocytes supports the hypothesis that their beneficial effects on cardiac function after a myocardial infarction (MI) are mediated by paracrine effects. In order to explore the role of the timing of cell therapy on the resultant angiogenesis and matrix remodeling, we compared the effects of myoblast transplantation early or late after MI. Methods: MI was generated in Lewis rats by coronary artery ligation. Skeletal myoblasts (5X10 6 ) or control media were injected into the scar and border zone either 5 days (early; n=33) or 30 days (late; n=29) after ligation. Function was assessed by echocardiography before transplantation (Tx), and 14 and 30 days thereafter. Invasive hemodynamics were measured with a Millar catheter at 30 days after Tx, following which explanted hearts were processed to assess LV volumes (computerized planimetry), fibrillar collagen (confocal microscopy), and myoblast engraftment, angiogenesis and extra-cellular matrix characteristics (immunohistochemistry). Results: Load-independent indices of left ventricular (LV) function (Emax, preload recruitable stroke work) were significantly increased in myoblast recipients compared with controls regardless of whether cells were implanted early (p=0.003, p=0.03, respectively) or late (p=0.003, p=0.0007, respectively) after MI. Changes in fractional shortening (by echocardiography) followed a similar pattern. These changes were associated with a significant reduction in LV volume (p=0.04, p=0.01 for early and late Tx groups vs. controls, respectively), and an increase in angiogenesis (p=0.02) whether the myoblasts were injected early or late after MI. The length and width of collagen fibers both in the scar and remote myocardium were also significantly increased (p<0.001) regardless of the timing of myoblast injection. Conclusions: The data suggest that myoblast transplantation improved cardiac function whether cells were injected early or late after MI. In each case, functional recovery was associated with enhanced angiogenesis, favourable effects on extracellular matrix remodeling, and improved LV geometry, supporting the paracrine hypothesis for myoblast transplantation.


2006 ◽  
Vol 290 (6) ◽  
pp. H2196-H2203 ◽  
Author(s):  
Mark F. Berry ◽  
Adam J. Engler ◽  
Y. Joseph Woo ◽  
Timothy J. Pirolli ◽  
Lawrence T. Bish ◽  
...  

Cellular therapy for myocardial injury has improved ventricular function in both animal and clinical studies, though the mechanism of benefit is unclear. This study was undertaken to examine the effects of cellular injection after infarction on myocardial elasticity. Coronary artery ligation of Lewis rats was followed by direct injection of human mesenchymal stem cells (MSCs) into the acutely ischemic myocardium. Two weeks postinfarct, myocardial elasticity was mapped by atomic force microscopy. MSC-injected hearts near the infarct region were twofold stiffer than myocardium from noninfarcted animals but softer than myocardium from vehicle-treated infarcted animals. After 8 wk, the following variables were evaluated: MSC engraftment and left ventricular geometry by histological methods, cardiac function with a pressure-volume conductance catheter, myocardial fibrosis by Masson Trichrome staining, vascularity by immunohistochemistry, and apoptosis by TdT-mediated dUTP nick-end labeling assay. The human cells engrafted and expressed a cardiomyocyte protein but stopped short of full differentiation and did not stimulate significant angiogenesis. MSC-injected hearts showed significantly less fibrosis than controls, as well as less left ventricular dilation, reduced apoptosis, increased myocardial thickness, and preservation of systolic and diastolic cardiac function. In summary, MSC injection after myocardial infarction did not regenerate contracting cardiomyocytes but reduced the stiffness of the subsequent scar and attenuated postinfarction remodeling, preserving some cardiac function. Improving scarred heart muscle compliance could be a functional benefit of cellular cardiomyoplasty.


2006 ◽  
Vol 291 (1) ◽  
pp. R155-R162 ◽  
Author(s):  
Stephanie A. Dean ◽  
Junhui Tan ◽  
Roselyn White ◽  
Edward R. O’Brien ◽  
Frans H. H. Leenen

The present study tested the hypothesis that 17β-estradiol (E2) inhibits increases in angiotensin-converting enzyme (ACE) and ANG II type 1 receptor (AT1R) in the brain and heart after myocardial infarction (MI) and, thereby, inhibits development of left ventricular (LV) dysfunction after MI. Age-matched female Wistar rats were treated as follows: 1) no surgery (ovary intact), 2) ovariectomy + subcutaneous vehicle treatment (OVX + Veh), or 3) OVX + subcutaneous administration of a high dose of E2 (OVX + high-E2). After 2 wk, rats were randomly assigned to coronary artery ligation (MI) and sham operation groups and studied after 3 wk. E2 status did not affect LV function in sham rats. At 2–3 wk after MI, impairment of LV function was similar across MI groups, as measured by echocardiography and direct LV catheterization. LV ACE mRNA abundance and activity were increased severalfold in all MI groups compared with respective sham animals and to similar levels across MI groups. In most brain nuclei, ACE and AT1R densities increased after MI. Unexpectedly, compared with the respective sham groups the relative increase was clearest (20–40%) in OVX + high-E2 MI rats, somewhat less (10–15%) in ovary-intact MI rats, and least (<10–15%) in OVX + Veh MI rats. However, because in the sham group brain ACE and AT1R densities increased in the OVX + Veh rats and decreased in the OVX + high-E2 rats compared with the ovary-intact rats, actual ACE and AT1R densities in most brain nuclei were modestly higher (<20%) in OVX + Veh MI rats than in the other two MI groups. Thus E2 does not inhibit upregulation of ACE in the LV after MI and amplifies the percent increases in ACE and AT1R densities in brain nuclei after MI, despite E2-induced downregulation in sham rats. Consistent with these minor variations in the tissue renin-angiotensin system, during the initial post-MI phase, E2 appears not to enhance or hinder the development of LV dysfunction.


2013 ◽  
Vol 305 (4) ◽  
pp. H542-H550 ◽  
Author(s):  
Toshihiro Shinbo ◽  
Kenichi Kokubo ◽  
Yuri Sato ◽  
Shintaro Hagiri ◽  
Ryuji Hataishi ◽  
...  

Inhaled nitric oxide (NO) has been reported to decrease the infarct size in cardiac ischemia-reperfusion (I/R) injury. However, reactive nitrogen species (RNS) produced by NO cause myocardial dysfunction and injury. Because H2 is reported to eliminate peroxynitrite, it was expected to reduce the adverse effects of NO. In mice, left anterior descending coronary artery ligation for 60 min followed by reperfusion was performed with inhaled NO [80 parts per million (ppm)], H2 (2%), or NO + H2, starting 5 min before reperfusion for 35 min. After 24 h, left ventricular function, infarct size, and area at risk (AAR) were assessed. Oxidative stress associated with reactive oxygen species (ROS) was evaluated by staining for 8-hydroxy-2′-deoxyguanosine and 4-hydroxy-2-nonenal, that associated with RNS by staining for nitrotyrosine, and neutrophil infiltration by staining for granulocyte receptor-1. The infarct size/AAR decreased with breathing NO or H2 alone. NO inhalation plus H2 reduced the infarct size/AAR, with significant interaction between the two, reducing ROS and neutrophil infiltration, and improved the cardiac function to normal levels. Although nitrotyrosine staining was prominent after NO inhalation alone, it was eliminated after breathing a mixture of H2 with NO. Preconditioning with NO significantly reduced the infarct size/AAR, but not preconditioning with H2. In conclusion, breathing NO + H2 during I/R reduced the infarct size and maintained cardiac function, and reduced the generation of myocardial nitrotyrosine associated with NO inhalation. Administration of NO + H2 gases for inhalation may be useful for planned coronary interventions or for the treatment of I/R injury.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Ana Carolina M Omoto ◽  
Fábio N Gava ◽  
Mauro de Oliveira ◽  
Carlos A Silva ◽  
Rubens Fazan ◽  
...  

Myocardium infarction (MI) elicited by coronary artery ligation (CAL) is commonly used to induce chronic heart failure (HF) in rats. However, CAL shows high mortality rates. Given that ischemia-reperfusion (IR) may cause the development of HF, this approach may be useful for obtaining a model of HF with low mortality rates. Therefore, it was compared the model of CAL vs. IR in rats, evaluating the mortality and cardiac morphological and functional aspects. The IR consisted of 30 minutes of cardiac ischemia. Wistar rats were assigned into three groups: CAL: n=18; IR: n=7; SHAM (fictitious IR): n=7. After four weeks of CAL, the subjects were evaluated by echocardiography and ventriculography as well. The statistical analysis consisted of ANOVA combined with Tukey’s posthoc test (p<0.05). There were no deaths in the IR and SHAM groups, whereas in the CAL group the mortality rate was 33.33% (6 out of 18). In the CAL group echocardiography showed increased left ventricular (LV) cavity during systole (8.3 ± 1mm) and diastole (10.5 ± 1mm); decreased LV free wall during systole (1.4 ± 0.5 mm); increased left atrium/aorta (2.3 ± 0.4) ratio. These changes were not significant in IR (4.8 ± 0.5mm, 7.6 ± 0.6mm, 2.6 ± 0.3 mm, 1.6 ± 0.2) and SHAM (4.6 ± 0.6 mm, 7.7 ± 0.8mm, 2.8 ± 0.4mm, 1.5 ± 0.2) groups. There was also the reduction in the ejection fraction in the CAL group (41 ± 12 %) when compared with IR (65 ± 9%) and SHAM (69 ± 7%) groups. The tissue Doppler analysis from the lateral mitral annulus showed reduction in E′ in CAL (-29 ± 8 mm/s) and IR (-31± 9 mm/s) groups when compared with the SHAM (-48 ± 11 mm/s) group. The ventriculography in the CAL group showed smaller maximum dP/dt (6519 ± 1062) and greater end-diastolic pressure (33 ± 8 mmHg) when compared with IR (8716 ± 756 mmHg/s; 9 ± 9 mmHg) and SHAM (7989 ± 1230 mmHg/s; 9 ± 7 mmHg) groups. The CAL group presented transmural infarct size of 40% of the left ventricular wall, measured under histopathological examination. In conclusion, IR for 30 minutes caused only small changes in LV diastolic function, assessed by tissue Doppler; however, the IR was not effective for promoting HF, as observed with CAL. Thus, it is possible that prolonged IR is necessary for promoting significant HF in rats.


Sign in / Sign up

Export Citation Format

Share Document