Aerobic exercise training reduces cardiac function and coronary flow-induced vasodilation in mice lacking adiponectin

Author(s):  
Jacob T. Caldwell ◽  
Karissa M. Dieseldorff Jones ◽  
Hyerim Park ◽  
Jose R. Pinto ◽  
Payal Ghosh ◽  
...  

We tested the hypothesis that adiponectin deficiency attenuates coronary microvascular and cardiac function and prevents exercise training-induced adaptations of the coronary microvasculature and the myocardium in adult mice. Adult wild-type (WT) or adiponectin knockout (adiponectin KO) mice underwent treadmill exercise training or remained sedentary for 8-10 weeks. Systolic and diastolic function were assessed before and after exercise training or cage confinement. Vasoreactivity of coronary resistance arteries was assessed at the end of exercise training or cage confinement. Before exercise training, ejection fraction and fractional shortening were similar in adiponectin KO and WT mice, but isovolumic contraction time was significantly lengthened in adiponectin KO mice. Exercise training increased ejection fraction (12%) and fractional shortening (20%) with no change in isovolumic contraction time in WT mice. In adiponectin KO mice, both ejection fraction (-9%) and fractional shortening (-12%) were reduced after exercise training, and these decreases were coupled to a further increase in isovolumic contraction time (20%). In sedentary mice, endothelium-dependent dilation to flow was higher in arterioles from adiponectin KO mice as compared to WT mice. Exercise training enhanced dilation to flow in WT mice, but decreased flow-induced dilation in adiponectin KO mice. These data suggest that compensatory mechanisms contribute to the maintenance of microvascular and cardiac function in sedentary mice lacking adiponectin; however, in the absence of adiponectin, coronary microvascular and cardiac adaptations to exercise training are compromised.

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Joshua Oakes ◽  
Susan Hamilton

FK506 Binding Proteins (FKBPs) are a family of cis-trans prolyl isomerases that bind rapamycin and FK506. FKBP12 and 12.6 interact with ryanodine receptors (RyR), homotetrameric transmembrane ion channels that regulate Ca2+ release from the sarcoplasmic reticulum (SR). FKBP12 interacts with RyR1 in skeletal muscle and FKBP12.6 interacts with RyR2 in cardiac muscle to regulate the Ca2+ leak properties of these channels. Recently it has been suggested that FKBP12 also plays a role in regulating RyR2 activity. Using mice with a cardiac specific deficiency in FKBP12, we analyzed the role of FKBP12 in cardiac function. We found that both male and female mice with a α-MyHC Cre/Lox mediated deficiency in FKBP12 in the heart (FKBP12 KD) developed a mild dilated cardiomyopathy, with enlarged left ventricular diameter both during systole and diastole, decreased ejection fraction and decreased fractional shortening. To elucidate the mechanism for these effects we assessed Ca2+ sparks in isolated cardiomyocytes. We found an increase in both Ca2+ spark frequency and spark amplitude in FKBP12 cardiac deficient mice without a change in spark duration. Despite a mild phenotype in adult mice, we found that approximately 25% of all pregnancies (26/106) in the FKBP12 deficient mice resulted in the mothers dying following the birth. Autopsies show that these cardiac specific FKBP12 deficient mice had increased heart weight and significantly dilated ventricles compared to female Cre mice. Our data suggest that a cardiac specific deficiency in FKBP12 leads to the development of pregnancy induced cardiomyopathy. Echocardiography on FKBP12 deficient mice one day after giving birth found that there was no significant difference in ejection fraction or fractional shortening compared to α-MyHC Cre control mice. FKBP12 deficient females, however, had larger hearts and 50% (2/4) displayed heart failure and died. In conclusion, we show that FKBP12 does indeed alter Ca2+ handling in the heart and that a loss of FKBP12 leads to the development of pregnancy induced cardiomyopathies in females.


2017 ◽  
Vol 13 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Cesar Cavinato Cal Abad ◽  
Ademir Manuel do Nascimento ◽  
Leandro Eziquiel dos Santos ◽  
Diego Figueroa ◽  
Pamella Ramona ◽  
...  

2017 ◽  
Vol 123 (6) ◽  
pp. 1579-1591
Author(s):  
Dalila Boudia ◽  
Valérie Domergue ◽  
Philippe Mateo ◽  
Loubina Fazal ◽  
Mathilde Prud’homme ◽  
...  

Exercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve cardiac function and metabolism in diabetic animals in contrast to lean animals.


2014 ◽  
Vol 306 (5) ◽  
pp. H730-H737 ◽  
Author(s):  
Kelly M. Grimes ◽  
Andrew Voorhees ◽  
Ying Ann Chiao ◽  
Hai-Chao Han ◽  
Merry L. Lindsey ◽  
...  

The naked mole-rat (NMR) is a strictly subterranean rodent with a low resting metabolic rate. Nevertheless, it can greatly increase its metabolic activity to meet the high energetic demands associated with digging through compacted soils in its xeric natural habitat where food is patchily distributed. We hypothesized that the NMR heart would naturally have low basal function and exhibit a large cardiac reserve, thereby mirroring the species' low basal metabolism and large metabolic scope. Echocardiography showed that young (2–4 yr old) healthy NMRs have low fractional shortening (28 ± 2%), ejection fraction (43 ± 2%), and cardiac output (6.5 ± 0.4 ml/min), indicating low basal cardiac function. Histology revealed large NMR cardiomyocyte cross-sectional area (216 ± 10 μm2) and cardiac collagen deposition of 2.2 ± 0.4%. Neither of these histomorphometric traits was considered pathological, since biaxial tensile testing showed no increase in passive ventricular stiffness. NMR cardiomyocyte fibers showed a low degree of rotation, contributing to the observed low NMR cardiac contractility. Interestingly, when the exercise mimetic dobutamine (3 μg/g ip) was administered, NMRs showed pronounced increases in fractional shortening, ejection fraction, cardiac output, and stroke volume, indicating an increased cardiac reserve. The relatively low basal cardiac function and enhanced cardiac reserve of NMRs are likely to be ecophysiological adaptations to life in an energetically taxing environment.


2015 ◽  
Vol 309 (5) ◽  
pp. R489-R498 ◽  
Author(s):  
Laura M. Reyes ◽  
Raven Kirschenman ◽  
Anita Quon ◽  
Jude S. Morton ◽  
Amin Shah ◽  
...  

Intrauterine growth restriction (IUGR) has been associated with increased susceptibility to myocardial ischemia-reperfusion (I/R) injury. Exercise is an effective preventive intervention for cardiovascular diseases; however, it may be detrimental in conditions of compromised health. The aim of this study was to determine whether exercise training can improve cardiac performance after I/R injury in IUGR offspring. We used a hypoxia-induced IUGR model by exposing pregnant Sprague-Dawley rats to 21% oxygen (control) or hypoxic (11% oxygen; IUGR) conditions from gestational day 15 to 21. At 10 wk of age, offspring were randomized to a sedentary group or to a 6-wk exercise protocol. Transthoracic echocardiography assessments were performed after 6 wk. Twenty-four hours after the last bout of exercise, ex vivo cardiac function was determined using a working heart preparation. With exercise training, there was improved baseline cardiac performance in male control offspring but a reduced baseline cardiac performance in male IUGR exercised offspring ( P < 0.05). In male offspring, exercise decreased superoxide generation in control offspring, while in IUGR offspring, it had the polar opposite effect (interaction P ≤ 0.05). There was no effect of IUGR or exercise on cardiac function in female offspring. In conclusion, in male IUGR offspring, exercise may be a secondary stressor on cardiac function. A reduction in cardiac performance along with an increase in superoxide production in response to exercise was observed in this susceptible group.


2017 ◽  
Vol 95 ◽  
pp. 965-973 ◽  
Author(s):  
Rayane Brinck Teixeira ◽  
Alexsandra Zimmer ◽  
Alexandre Luz de Castro ◽  
Bruna Gazzi de Lima-Seolin ◽  
Patrick Türck ◽  
...  

2019 ◽  
Vol 3 (s1) ◽  
pp. 2-3
Author(s):  
Adam J Rocker ◽  
David Lee ◽  
Maria Cavasin ◽  
Daewon Park

OBJECTIVES/SPECIFIC AIMS: This study aims to evaluate an injectable sulfonated reserve thermal gel (SPSHU-PNIPAM) for angiogenic growth factor delivery by examining the vascularization and cardioprotective properties of the polymer system. This study could lead to clinical translation by moving into larger animal studies and eventually clinical trials. The success of this study was determined by analyzing the results of echocardiography data on cardiac function (ejection fraction, fractional shortening, and left ventricle inner diameter) and assessment of histological staining on cardiac tissue (fibrotic tissue formation, infarct size, wall thinning, blood vessel cell counts, and vessel size quantification) after MI. Five groups were compared for this study: saline, VEGF, SPSHU-PNIPAM, SPSHU-PNIPAM loaded with VEGF, and no injection (sham). Significant statistical differences between control groups and polymer injection groups, when p < 0.05, indicates successful outcomes from this study. METHODS/STUDY POPULATION: SPSHU-PNIPAM Polymer Synthesis: SPSHU-PNIPAM was synthesized as previously described. Briefly, PSHU was synthesized with N-BOC serinol, urea, and HDI at 90 °C for 7 days. PSHU was deprotected in DCM and TFA at room temperature for 45 min. PNIPAM was conjugated to the deprotected PSHU using EDC and NHS at room temperature for 24 h. PSHU-PNIPAM was sulfonated with 1,3-propanesultone and potassium tert-butoxide at 60 °C for 3 days. Surgical Procedure: Male C57BL/6 mice weighing 24-28 g were anaesthetized using isoflurane and artificial ventilation provided. A small left thoracotomy incision was made at the left fourth intercostal space to expose the heart, and the proximal left anterior descending coronary artery was ligated for 45 min. The coronary artery was then released and 30 μl injections of saline, SPSHU-PNIPAM (1% w/v), bolus VEGF (200 ng), or SPSHU-PNIPAM + VEGF (1%, 200 ng) were injected intramyocardially at the infarcted site and the incision closed. Echocardiography and Histological Staining: Standard serial transthoracic echocardiography was performed while simultaneously recording ECG to assess cardiac morphology and left ventricular function. Immunohistochemistry and histology staining procedures were used to identify: fibrotic tissue formation, infarct size, wall thinning, blood vessel cell counts, and vessel size quantification. These were performed according to manufacturer instructions or by previously published criteria. Statistical Analysis: Two-tailed t-test assuming unequal variances was used to determine significant differences between two groups. Analysis of variance (ANOVA) was used to determine significant differences between three or more groups followed by Tukey-Kramer to determine significant differences between two groups as appropriate. Statistical significance was considered when p < 0.05. References: Lee, D. J., Rocker, A. J., Bardill, J. R., Shandas, R. and Park, D. (2018), A sulfonated reversible thermal gel for the spatiotemporal control of VEGF delivery to promote therapeutic angiogenesis. J Biomed Mater Res. doi:10.1002/jbm.a.36496. RESULTS/ANTICIPATED RESULTS: Echocardiography results: Ejection fraction improved for the SPSHU-PNIPAM groups compared to the saline, VEGF, and no injection controls (Figure 1). SPSHU-PNIPAM either loaded with or without VEGF seemed to have very similar treatment effects for ejection fraction and fractional shortening. This indicates that the more significant component of the cardioprotective effects of the hydrogel system is the biomaterial itself rather than the release of VEGF (Figure 1). However, the only statistically significant improvement for ejection fraction, fractional shortening, and left ventricular inner diameter that was observed compared to the saline, VEGF, and no injection controls was the SPSHU-PNIPAM + VEGF group (Figure 1). Histology Results: After analyzing Masson trichrome staining, SPSHU-PNIPAM + VEGF demonstrated the smallest infarct size after MI reperfusion injury and was statistically reduced compared to the saline, VEGF, and no injection controls (Figure 2). Furthermore, left ventricular wall thickness showed that the SPSHU-PNIPAM + VEGF treatment group reduced the wall thinning resulting from MI. The SPSHU-PNIPAM group without VEGF displayed a thicker ventricular wall as well, which may be attributed to the increased mechanical stability with the intramyocardial injection of the biomaterial (Figure 2). The immunohistochemical results for vascularization show that the SPSHU-PNIPAM + VEGF group significantly increased the number of functional vascular endothelial cells compared to the saline, VEGF, SPSHU-PNIPAM, and no injection controls (Figure 3). Additionally, the SPSHU-PNIPAM + VEGF group showed a significant increase in total vessel formation compared to the control groups, although there was no significant difference compared to SPSHU-PNIPAM without VEGF (Figure 3). The promotion of angiogenesis, without the delivery of VEGF, may be attributed to inflammation induced vascularization, including VEGF dependent vascularization that is initiated via signal transducer and activator of transcription 3 (STAT3) pathway that is induced by the pro-inflammatory cytokine interleukin 6. DISCUSSION/SIGNIFICANCE OF IMPACT: The SPSHU-PNIPAM loaded with VEGF was evaluated for therapeutic angiogenesis to protect cardiac function after MI. Treatment with SPSHU-PNIPAM showed improved cardiac function and vascularization; however, the additional delivery of VEGF showed inadequate additional therapeutic benefits. Further investigation will include optimizing VEGF release characteristics including both loading amount and release rate. The decline of ejection fraction and fractional shortening after MI were reduced, while left ventricular internal diameter showed reduced ventricular dilation. Both infarct size and left ventricular wall thinning decreased while an increase in the vessel formation was observed. These results demonstrate the SPSHU-PNIPAM biomaterial has cardioprotective and increased vascularization properties for the treatment of MI.


Sign in / Sign up

Export Citation Format

Share Document