Possible usefulness of apocynin, an NADPH oxidase inhibitor, for nitrate tolerance: prevention of NO donor-induced endothelial cell abnormalities

2007 ◽  
Vol 293 (1) ◽  
pp. H790-H797 ◽  
Author(s):  
Akiko Fukatsu ◽  
Toshio Hayashi ◽  
Asaka Miyazaki-Akita ◽  
Hisako Matsui-Hirai ◽  
Yukie Furutate ◽  
...  

The long-term benefits of nitroglycerin therapy are limited by tolerance development. Understanding the precise nature of mechanisms underlying nitroglycerin-induced endothelial cell dysfunction may provide new strategies to prevent tolerance development. In this line, we tested interventions to prevent endothelial dysfunction in the setting of nitrate tolerance. When bovine aortic endothelial cells (BAECs) were continuously treated with nitric oxide (NO) donors, including nitroglycerin, over 2–3 days, basal production of nitrite and nitrate (NOx) was diminished. The diminished basal NOx levels were mitigated by intermittent treatment allowing an 8-h daily nitrate-free interval during the 2- to 3-day treatment period. Addition of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin restored the basal levels of NOx that were decreased by continuous nitroglycerin treatment of BAECs. Apocynin caused significant improvement of increased mRNA and protein levels of endothelial nitric oxide synthase (eNOS) in BAECs given nitroglycerin continuously over the treatment period. Apocynin also reduced endothelial production of reactive oxygen species (ROS) after continuous nitroglycerin treatment. These results showed an essential similarity to the effects of a nitrate-free interval. Application of the NOS inhibitor Nω-nitro- l-arginine methyl ester caused a recovery effect on basal NOx and eNOS expression but was without effect on ROS levels in continuously NO donor-treated BAECs. In conclusion, the present study characterized abnormal features and functions of endothelial cells following continuous NO donor application. We suggest that inhibition of NADPH oxidase, by preventing NO donor-induced endothelial dysfunction, may represent a potential therapeutic strategy that confers protection from nitrate tolerance development.

2008 ◽  
Vol 228 (3) ◽  
pp. 277-285 ◽  
Author(s):  
Chiara Riganti ◽  
Costanzo Costamagna ◽  
Sophie Doublier ◽  
Erica Miraglia ◽  
Manuela Polimeni ◽  
...  

2007 ◽  
Vol 292 (2) ◽  
pp. H893-H903 ◽  
Author(s):  
Galina N. Antonova ◽  
Connie M. Snead ◽  
Alexander S. Antonov ◽  
Christiana Dimitropoulou ◽  
Richard C. Venema ◽  
...  

Large (pathological) amounts of nitric oxide (NO) induce cell injury, whereas low (physiological) NO concentrations often ameliorate cell injury. We tested the hypotheses that pretreatment of endothelial cells with low concentrations of NO (preconditioning) would prevent injury induced by high NO concentrations. Apoptosis, induced in bovine aortic endothelial cells (BAECs) by exposing them to either 4 mM sodium nitroprusside (SNP) or 0.5 mM N-(2-aminoethyl)- N-(2-hydroxy-2-nitrosohydrazino)-1,2-ethylenediamine (spermine NONOate) for 8 h, was abolished by 24-h pretreatment with either 100 μM SNP, 10 μM spermine NONOate, or 100 μM 8-bromo-cGMP (8-Br-cGMP). Repair of BAECs following wounding, measured as the recovery rate of transendothelial electrical resistance, was delayed by 8-h exposure to 4 mM SNP, and this delay was significantly attenuated by 24-h pretreatment with 100 μM SNP. NO preconditioning produced increased association and expression of soluble guanyl cyclase (sGC) and heat shock protein 90 (HSP90). The protective effect of NO preconditioning, but not the injurious effect of 4 mM SNP, was abolished by either a sGC activity inhibitor 1H-[1,2,4]oxadiazolo-[4,3- a]quinoxalin-1-one (ODQ) or a HSP90 binding inhibitor (radicicol) and was mimicked by 8-Br-cGMP. We conclude that preconditioning with a low dose of NO donor accelerates repair and maintains endothelial integrity via a mechanism that includes the HSP90/sGC pathway. HSP90/sGC may thus play a role in the protective effects of NO-generating drugs from injurious stimuli.


2011 ◽  
Vol 340 ◽  
pp. 363-368 ◽  
Author(s):  
Xiao Qing Zou ◽  
Yong Lan Ding ◽  
Sheng Ming Peng ◽  
Chang Ping Hu ◽  
Han Wu Deng ◽  
...  

Angiogenesis, the development of new capillaries from pre-existing vessels, requires the coordinate activation of endothelial cells, which migrate and proliferate to form functional vessels. Endothelial dysfunction and decreased nitric oxide bioavailability may underscore the impairment of angiogenesis. As such, the delivery of exogenous NO is an attractive therapeutic option that has been used to therapeutic angiogenesis. In this paper, a novel group of hybrid nitric oxide-releasing chrysin derivatives was synthesized. The results indicated that all these chrysin derivatives exhibited promotion of endothelial migration and tubulogenesis in vitro as well as stimulation angiogenesis in vivo.Furthermore, all compounds released NO upon incubation with phosphate buffer at pH 7.4 and enhanced VEGF secretion and VEGF mRNA expression of endothelial cells. These hybrid ester NO donor prodrugs offer a potential drug design concept for the development of therapeutic or preventive agents for angiogenesis deficiency due to ischemic diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ping-Ho Chen ◽  
Yaw-Syan Fu ◽  
Yun-Ming Wang ◽  
Kun-Han Yang ◽  
Danny Ling Wang ◽  
...  

Hydrogen sulfide (H2S) and nitric oxide (NO), two endogenous gaseous molecules in endothelial cells, got increased attention with respect to their protective roles in the cardiovascular system. However, the details of the signaling pathways between H2S and NO in endothelia cells remain unclear. In this study, a treatment with NaHS profoundly increased the expression and the activity of endothelial nitric oxide synthase. Elevated gaseous NO levels were observed by a novel and specific fluorescent probe, 5-amino-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid methyl ester (FA-OMe), and quantified by flow cytometry. Further study indicated an increase of upstream regulator for eNOS activation, AMP-activated protein kinase (AMPK), and protein kinase B (Akt). By using a biotin switch, the level of NO-mediated protein S-nitrosylation was also enhanced. However, with the addition of the NO donor, NOC-18, the expressions of cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase were not changed. The level of H2S was also monitored by a new designed fluorescent probe, 4-nitro-7-thiocyanatobenz-2-oxa-1,3-diazole (NBD-SCN) with high specificity. Therefore, NO did not reciprocally increase the expression of H2S-generating enzymes and the H2S level. The present study provides an integrated insight of cellular responses to H2S and NO from protein expression to gaseous molecule generation, which indicates the upstream role of H2S in modulating NO production and protein S-nitrosylation.


Author(s):  
Alexandr I. Kokorev ◽  
◽  
Yuriy E. Kolupaev ◽  
Maxim A. Shkliarevskyi ◽  
Anna A. Lugovaya ◽  
...  

Polyamines are plant metabolites involved in many processes under physiologically normal and stressful conditions. Cadaverine is one of the least studied plant polyamines. The relationship between its physiological effects and the formation of signaling mediators, in particular, reactive oxygen species (ROS), has hardly been specially studied. The aim of this work was to study the possible protective effect of cadaverine on wheat (Triticum aestivum L.) seedlings under heat stress and its relationship with the formation and detoxification of ROS by antioxidant enzymes. Etiolated seedlings of soft winter wheat variety Doskonala were used in the work. We treated three-day-old seedlings with cadaverine at concentrations ranging from 0.05 to 2.5 mM by adding it to the root incubation medium. In some variants of the experiment, we treated seedlings with a hydrogen peroxide scavenger dimethylthiourea (DMTU - 150 μM), a diamine oxidase inhibitor aminogunidine (1 mM) or an inhibitor NADPH oxidase imidazole (10 μM), as well as the indicated inhibitors in combination with cadaverine. The hydrogen peroxide content and the activity of antioxidant enzymes were determined in the roots of seedlings a certain time after treatment with the studied compounds. One day after the treatment of seedlings with cadaverine, ROS antagonists, and a combination of effectors, the seedlings were subjected to damaging heating in a water thermostat (10 min at 45 °C). 24 h after heating, we assessed the content of the products of lipid peroxidation (LPO) in the roots and, after 3 days, the survival of seedlings. Incubation in the presence of cadaverine increased the resistance of seedlings to damaging heat (See Fig. 1). The highest relative number of surviving seedlings was observed in the variant with 1 mM cadaverine treatment. Under the effect of cadaverine, the content of hydrogen peroxide in the roots increased (See Fig. 2). We observed a noticeable effect 1-4 h after the start of treatment, with a maximum after 2 h. Treatment of seedlings with a scavenger of hydrogen peroxide DMTU removed the manifestation of the effect of an increase in the content of H2 O2 in the roots caused by the action of cadaverine (See Fig. 3). This effect was also completely eliminated by the diamine oxidase inhibitor aminoguanidine and was almost unchanged in the presence of the NADPH oxidase inhibitor imidazole. The effect of heat stress on seedlings caused an increase in the content of the LPO products in them. Treatment with cadaverine markedly reduced this manifestation of oxidative stress. The antioxidant DMTU and the diamine oxidase inhibitor aminoguanidine largely neutralized the protective effect of cadaverine (See Fig. 4a). At the same time, the NADPH oxidase inhibitor imidazole had almost no effect on the manifestation of the effect of cadaverine on the LPO products content in roots. Under the influence of DMTU and aminoguanidine, but not imidazole, the positive effect of cadaverine on the survival of seedlings after damaging heating was also leveled out (See Fig. 4b). The treatment of seedlings with cadaverine caused a change in the activity of antioxidant enzymes in the roots (superoxide dismutase - SOD, catalase, and guaiacol peroxidase) (See Fig. 5). DMTU and aminoguanidine neutralized the effect of cadaverine-induced increase in the activity of catalase and guaiacol peroxidase, but had almost no effect on the increase in SOD activity in roots induced by this diamine (See Fig. 6). The NADPH oxidase inhibitor imidazole did not significantly affect the manifestation of the effect of increasing the activity of antioxidant enzymes when seedlings are treated with cadaverine. We can conclude that one of the signaling mediators involved in the regulation activity of catalase and guaiacol peroxidase and in the induction of heat resistance of wheat seedlings by exogenous cadaverine is hydrogen peroxide, which is formed during the oxidation of cadaverine by diamine oxidase. At the same time, the modification of SOD activity in the roots of wheat seedlings with cadaverine, apparently, can occur without the participation of ROS.


2002 ◽  
Vol 92 (3) ◽  
pp. 1152-1158 ◽  
Author(s):  
Scott Earley ◽  
Leif D. Nelin ◽  
Louis G. Chicoine ◽  
Benjimen R. Walker

Nitric oxide (NO) attenuates hypoxia-induced endothelin (ET)-1 expression in cultured umbilical vein endothelial cells. We hypothesized that NO similarly attenuates hypoxia-induced increases in ET-1 expression in the lungs of intact animals and reasoned that potentially reduced ET-1 levels may contribute to the protective effects of NO against the development of pulmonary hypertension during chronic hypoxia. As expected, hypoxic exposure (24 h, 10% O2) increased rat lung ET-1 peptide and prepro-ET-1 mRNA levels. Contrary to our hypothesis, inhaled NO (iNO) did not attenuate hypoxia-induced increases in pulmonary ET-1 peptide or prepro-ET-1 mRNA levels. Because of this surprising finding, we also examined the effects of NO on hypoxia-induced increases in ET peptide levels in cultured cell experiments. Consistent with the results of iNO experiments, administration of the NO donor S-nitroso- N-acetyl-penicillamine to cultured bovine pulmonary endothelial cells did not attenuate increases in ET peptide levels resulting from hypoxic (24 h, 3% O2) exposure. In additional experiments, we examined the effects of NO on the activity of a cloned ET-1 promoter fragment containing a functional hypoxia inducible factor-1 binding site in reporter gene experiments. Whereas moderate hypoxia (24 h, 3% O2) had no effect on ET-1 promoter activity, activity was increased by severe hypoxic (24 h, 0.5% O2) exposure. ET-1 promoter activity after S-nitroso- N-acetyl-penicillamine administration during severe hypoxia was greater than that in normoxic controls, although activity was reduced compared with that in hypoxic controls. These findings suggest that hypoxia-induced pulmonary ET-1 expression is unaffected by NO.


2003 ◽  
Vol 228 (6) ◽  
pp. 741-748 ◽  
Author(s):  
Jerzy J. Jaroszewski ◽  
Dariusz J. Skarzynski ◽  
Robert M. Blair ◽  
William Hansel

The objective of the present study was to investigate the role of cell-to-cell contact in the influence of nitric oxide (NO) on the secretory function of the bovine corpus luteum (CL). In Experiment 1, separate small luteal cells (SLC) or large (LLC) luteal cells were perfused with 100 μ M spermineNONOate, a NO donor, or with 100 μ M Nω-nitro-L-arginine methyl ester (L-NAME), a NO synthase (NOS) inhibitor; in Experiment 2, a mixture of LLC and SLC and endothelial cells was cultured and incubated with spermineNONOate or L-NAME; in Experiment 3, spermineNONOate was perfused into the CL (100 mg/4 hr) by a microdialysis system in vivo. Perfusion of isolated SLC and LLC with the NO donor or NOS inhibitor (Experiment 1) did not affect ( P > 0.05) secretion of progesterone (P4) or oxytocin (OT). L-NAME perfusion increased ( P < 0.05) leukotriene C4 (LTC4) secretion by both SLC and LLC cells. Treatment of mixtures of luteal cells with an NO donor (Experiment 2) significantly decreased ( P < 0.001) secretion of P4 and OT and increased ( P < 0.001) production of prostaglandin F2α (PGF2α) and LTC4. L-NAME stimulated ( P < 0.001) P4 secretion, but did not influence ( P > 0.05) OT, PGF2α or LTC4 production. Intraluteal administration (Experiment 3) of spermineNONOate increased ( P < 0.001) LTC4 and PGF2α, decreased OT, but did not change P4 levels in perfusate samples. These data indicate that cell-to-cell contact and cell composition play important roles in the response of bovine CL to treatment with NO donors or NOS inhibitors, and that paracrine mechanisms are required for the full secretory response of the CL in NO action. Endothelial cells appear to be required for the full secretory response of the CL to NO.


Sign in / Sign up

Export Citation Format

Share Document