Voltage-dependent action of tetrodotoxin in mammalian cardiac myocytes

1986 ◽  
Vol 251 (2) ◽  
pp. H475-H480
Author(s):  
P. M. Vassilev ◽  
R. W. Hadley ◽  
K. S. Lee ◽  
J. R. Hume

Single Na+ channel currents have been examined in isolated guinea pig ventricular myocytes using the patch-clamp technique. The effects of lidocaine, extracellular calcium [(Ca)o], and tetrodotoxin on patch Na+ channel availability were assessed using ensemble averages of Na+-channel openings during depolarizing test potential steps from 7 to 10 different patch-holding potentials in each cell-attached patch. In six control patches, the potential for 50% channel availability (Vh) was -15 mV (relative to an average resting membrane potential of -80 mV). Exposure of patches to either lidocaine or elevated (Ca)o produced the expected shifts in Vh [average -22 mV for lidocaine and +10 mV for 6 mM (Ca)o]. Exposure of patches to tetrodotoxin (0.5 microM or 1.0 microM) produced a dose-dependent hyperpolarizing shift of Vh (average -10 and -17 mV) compared with control patches. The hyperpolarizing shift by tetrodotoxin was observed with pulses applied at frequencies of 1.0 or 0.067 Hz. In agreement with earlier maximal upstroke velocity studies in the same preparation, we conclude that block of ventricular Na+ channels by tetrodotoxin exhibits genuine steady-state voltage dependence.

1992 ◽  
Vol 68 (1) ◽  
pp. 85-92 ◽  
Author(s):  
M. Mynlieff ◽  
K. G. Beam

1. Calcium channel currents were measured with the whole-cell patch clamp technique in cultured, identified mouse motoneurons. Three components of current were operationally defined on the basis of voltage dependence, kinetics, and pharmacology. 2. Test potentials to -50 mV or greater (10 mM external Ca2+) elicited a low-voltage activated T-type current that was transient (decaying to baseline in less than 200 ms) and had a relatively slow time to peak (20-50 ms). A 1-s prepulse to -45 mV produced approximately half-maximal inactivation of this T current. 3. Two high-voltage activated (HVA) components of current (1 transient and 1 sustained) were activated by test potentials to -20 mV or greater (10 mM external Ca2+). A 1-s prepulse to -35 mV produced approximately half-maximal inactivation of the transient component without affecting the sustained component. 4. When Ba2+ was substituted for Ca2+ as the charge carrier, activation of the HVA components was shifted in the hyperpolarizing direction, and the relative amplitude of the transient HVA component was reduced. 5. Amiloride (1-2 mM) caused a reversible, partial block of the T current without affecting the HVA components. 6. The dihydropyridine agonist isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5-nitro-3- pyridine-carboxylate [(+)-SDZ 202-791, 100 nM-1 microM)] shifted the activation of the sustained component of HVA current to more negative potentials and increased its maximal amplitude. Additionally, (+)-SDZ 202-791 caused the appearance of a slowed component of tail current.(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 84 (3) ◽  
pp. 361-377 ◽  
Author(s):  
D Yamamoto ◽  
J Z Yeh

The kinetics of 9-aminoacridine (9-AA) block of single Na channels in neuroblastoma N1E-115 cells were studied using the gigohm seal, patch clamp technique, under the condition in which the Na current inactivation had been eliminated by treatment with N-bromoacetamide (NBA). Following NBA treatment, the current flowing through individual Na channels was manifested by square-wave open events lasting from several to tens of milliseconds. When 9-AA was applied to the cytoplasmic face of Na channels at concentrations ranging from 30 to 100 microM, it caused repetitive rapid transitions (flickering) between open and blocked states within single openings of Na channels, without affecting the amplitude of the single channel current. The histograms for the duration of blocked states and the histograms for the duration of open states could be fitted with a single-exponential function. The mean open time (tau o) became shorter as the drug concentration was increased, while the mean blocked time (tau b) was concentration independent. The association (blocking) rate constant, kappa, calculated from the slope of the curve relating the reciprocal mean open time to 9-AA concentration, showed little voltage dependence, the rate constant being on the order of 1 X 10(7) M-1s-1. The dissociation (unblocking) rate constant, l, calculated from the mean blocked time, was strongly voltage dependent, the mean rate constant being 214 s-1 at 0 mV and becoming larger as the membrane being hyperpolarized. The voltage dependence suggests that a first-order blocking site is located at least 63% of the way through the membrane field from the cytoplasmic surface. The equilibrium dissociation constant for 9-AA to block the Na channel, defined by the relation of l/kappa, was calculated to be 21 microM at 0 mV. Both tau -1o and tau -1b had a Q10 of 1.3, which suggests that binding reaction was diffusion controlled. The burst time in the presence of 9-AA, which is the sum of open times and blocked times, was longer than the lifetime of open channels in the absence of drug. All of the features of 9-AA block of single Na channels are compatible with the sequential model in which 9-AA molecules block open Na channels, and the blocked channels could not close until 9-AA molecules had left the blocking site in the channels.


1990 ◽  
Vol 258 (4) ◽  
pp. H977-H982 ◽  
Author(s):  
B. Schubert ◽  
A. M. Vandongen ◽  
G. E. Kirsch ◽  
A. M. Brown

The mechanism by which the beta-adrenergic agonist isoproterenol (ISO) modulates voltage-dependent cardiac Na+ currents (INa) was studied in single ventricular myocytes of neonatal rat using the gigaseal patch-clamp technique. ISO inhibited INa reversibly, making the effect readily distinguishable from the monotonic decrease of INa caused by the shift in gating that customarily occurs during whole cell patch-clamp experiments (E. Fenwick, A. Marty, and E. Neher, J. Physiol. Lond. 331: 599-635, 1982; and J. M. Fernandez, A. P. Fox, and S. Krasne, J. Physiol. Lond. 356: 565-585, 1984). The inhibition was biphasic, having fast and slow components, and was voltage-dependent, being more pronounced at depolarized potentials. In whole cell experiments the membrane-permeable adenosine 3',5'-cyclic monophosphate (cAMP) congener 8-bromo-cAMP reduced INa. In cell-free inside-out patches with ISO present in the pipette, guanosine 5'-triphosphate (GTP) applied to the inner side of the membrane patch inhibited single Na+ channel activity. This inhibition could be partly reversed by hyperpolarizing prepulses. The nonhydrolyzable GTP analogue guanosine-5'-O-(3-thiotriphosphate) greatly reduced the probability of single Na+ channel currents in a Mg2(+)-dependent manner. We propose that ISO inhibits cardiac Na+ channels via the guanine nucleotide binding, signal-transducing G protein that acts through both direct (membrane delimited) and indirect (cytoplasmic) pathways.


1999 ◽  
Vol 277 (2) ◽  
pp. H826-H833 ◽  
Author(s):  
Seiko Tanabe ◽  
Toshio Hata ◽  
Masayasu Hiraoka

To explore a possible ionic basis for the prolonged Q-T interval in women compared with that in men, we investigated the electrophysiological effects of estrogen in isolated guinea pig ventricular myocytes. Action potentials and membrane currents were recorded using the whole cell configuration of the patch-clamp technique. Application of 17β-estradiol (10–30 μM) significantly prolonged the action potential duration (APD) at 20% (APD20) and 90% repolarization (APD90) at stimulation rates of 0.1–2.0 Hz. In the presence of 30 μM 17β-estradiol, APD20 and APD90 at 0.1 Hz were prolonged by 46.2 ± 17.1 and 63.4 ± 11.7% of the control ( n = 5), respectively. In the presence of 30 μM 17β-estradiol the peak inward Ca2+ current ( I CaL) was decreased to 80.1 ± 2.5% of the control ( n = 4) without a shift in its voltage dependence. Application of 30 μM 17β-estradiol decreased the rapidly activating component of the delayed outward K+ current ( I Kr) to 63.4 ± 8% and the slowly activating component ( I Ks) to 65.8 ± 8.7% with respect to the control; the inward rectifier K+ current was barely affected. The results suggest that 17β-estradiol prolonged APD mainly by inhibiting the I Kcomponents I Krand I Ks.


2021 ◽  
Author(s):  
Wolfgang Stein ◽  
Margaret DeMaegd ◽  
Lena Yolanda Braun ◽  
Andrés G Vidal-Gadea ◽  
Allison L Harris ◽  
...  

Like their chemical counterparts, electrical synapses show complex dynamics such as rectification and voltage dependence that interact with other electrical processes in neurons. The consequences arising from these interactions for the electrical behavior of the synapse, and the dynamics they create, remain largely unexplored. Using a voltage-dependent electrical synapse between a descending modulatory projection neuron (MCN1) and a motor neuron (LG) in the crustacean stomatogastric ganglion, we find that the influence of the hyperpolarization-activated inward current (Ih) is critical to the function of the electrical synapse. When we blocked Ih with CsCl, the voltage dependence of the electrical synapse shifted by 18.7 mV to more hyperpolarized voltages, placing the dynamic range of the electrical synapse outside of the range of voltages used by the LG motor neuron (-60.2 mV to -44.9 mV). With dual electrode current- and voltage-clamp recordings, we demonstrate that this voltage shift is due to a sustained effect of Ih on the presynaptic MCN1 axon terminal membrane potential. Ih-induced depolarization of the axon terminal membrane potential increased the electrical postsynaptic potentials and currents. With Ih present, the axon terminal resting membrane potential depolarized, shifting the dynamic range of the electrical synapse towards the functional range of the motor neuron. We thus demonstrate that the function of an electrical synapse is critically influenced by a voltage-dependent ionic current (Ih).


1993 ◽  
Vol 264 (4) ◽  
pp. H1315-H1318 ◽  
Author(s):  
A. P. Williamson ◽  
R. H. Kennedy ◽  
E. Seifen ◽  
J. P. Lindemann ◽  
J. R. Stimers

The purpose of this study was to determine if myocardial alpha 1a-and/or alpha 1b-adrenoceptors are involved in the increase in Na-K pump current (Ip) elicited by alpha 1-adrenergic agonists. Single rat ventricular myocytes were isolated by enzymatic disaggregation. The whole cell patch-clamp technique was used to examine dose-dependent effects of phenylephrine (PE) on holding current (Ih) and to determine whether observed actions were mediated via alpha 1a-or alpha 1b-adrenergic receptors. To minimize the contribution of transsar-colemmal currents other than Ip to Ih, membrane voltage was held constant -40 mV, and cells were maintained in a Ca-free perfusate containing 1 mM Ba and 0.1 mM Cd. All experiments were conducted in the presence of 3 microM nadolol. PE elicited dose-dependent increases in Ih, with a peak effect of 0.57 +/- 0.03 pA/pF observed at 30 microM. The response to PE was dose dependently inhibited by prazosin and chloroethylclonidine and was totally eliminated by 1 mM ouabain. When used at doses selective for the alpha 1a-subtype, WB4101 failed to significantly antagonize the action of PE. These data suggest that the observed alpha 1-adrenoceptor-mediated increase in Ih in isolated rat ventricular myocytes is the result of an increase in Ip effected via stimulation of alpha 1b-adrenergic receptors.


2008 ◽  
Vol 132 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Hui Sun ◽  
Diego Varela ◽  
Denis Chartier ◽  
Peter C. Ruben ◽  
Stanley Nattel ◽  
...  

Two types of voltage-dependent Ca2+ channels have been identified in heart: high (ICaL) and low (ICaT) voltage-activated Ca2+ channels. In guinea pig ventricular myocytes, low voltage–activated inward current consists of ICaT and a tetrodotoxin (TTX)-sensitive ICa component (ICa(TTX)). In this study, we reexamined the nature of low-threshold ICa in dog atrium, as well as whether it is affected by Na+ channel toxins. Ca2+ currents were recorded using the whole-cell patch clamp technique. In the absence of external Na+, a transient inward current activated near −50 mV, peaked at −30 mV, and reversed around +40 mV (HP = −90 mV). It was unaffected by 30 μM TTX or micromolar concentrations of external Na+, but was inhibited by 50 μM Ni2+ (by ∼90%) or 5 μM mibefradil (by ∼50%), consistent with the reported properties of ICaT. Addition of 30 μM TTX in the presence of Ni2+ increased the current approximately fourfold (41% of control), and shifted the dose–response curve of Ni2+ block to the right (IC50 from 7.6 to 30 μM). Saxitoxin (STX) at 1 μM abolished the current left in 50 μM Ni2+. In the absence of Ni2+, STX potently blocked ICaT (EC50 = 185 nM) and modestly reduced ICaL (EC50 = 1.6 μM). While TTX produced no direct effect on ICaT elicited by expression of hCaV3.1 and hCaV3.2 in HEK-293 cells, it significantly attenuated the block of this current by Ni2+ (IC50 increased to 550 μM Ni2+ for CaV3.1 and 15 μM Ni2+ for CaV3.2); in contrast, 30 μM TTX directly inhibited hCaV3.3-induced ICaT and the addition of 750 μM Ni2+ to the TTX-containing medium led to greater block of the current that was not significantly different than that produced by Ni2+ alone. 1 μM STX directly inhibited CaV3.1-, CaV3.2-, and CaV3.3-mediated ICaT but did not enhance the ability of Ni2+ to block these currents. These findings provide important new implications for our understanding of structure–function relationships of ICaT in heart, and further extend the hypothesis of a parallel evolution of Na+ and Ca2+ channels from an ancestor with common structural motifs.


1998 ◽  
Vol 79 (2) ◽  
pp. 753-762 ◽  
Author(s):  
David J. Adams ◽  
Carlo Trequattrini

Adams, David J. and Carlo Trequattrini. Opioid receptor-mediated inhibition of ω-conotoxin GVIA-sensitive calcium channel currents in rat intracardiac neurons. J. Neurophysiol. 79: 753–762, 1998. Modulation of depolarization-activated ionic conductances by opioid receptor agonists was investigated in isolated parasympathetic neurons from neonatal rat intracardiac ganglia by using the whole cell perforated patch clamp technique. Met-enkephalin (10 μM) altered the action potential waveform, reducing the maximum amplitude and slowing the rate of rise and repolarization but the afterhyperpolarization was not appreciably altered. Under voltage clamp, 10 μM Met-enkephalin selectively and reversibly inhibited the peak amplitude of high-voltage–activated Ca2+ channel currents elicited at 0 mV by ∼52% and increased three- to fourfold the time to peak. Met-enkephalin had no effect on the voltage dependence of steady-state inactivation but shifted the voltage dependence of activation to more positive membrane potentials whereby stronger depolarization was required to open Ca2+ channels. Half-maximal inhibition of Ba2+ current ( I Ba) amplitude was obtained with 270 nM Met-enkephalin or Leu-enkephalin. The opioid receptor subtype selective agonists, DAMGO and DADLE, but not DPDPE, inhibited I Ba and were antagonized by the opioid receptor antagonists, naloxone and naltrindole with IC50s of 84 nM and 1 μM, respectively. The κ-opioid receptor agonists, bremazocine and dynorphin A, did not affect Ca2+ channel current amplitude or kinetics. Taken together, these data suggest that enkephalin-induced inhibition of Ca2+ channels in rat intracardiac neurons is mediated primarily by the μ-opioid receptor type. Addition of Met-enkephalin after exposure to 300 nM ω-conotoxin GVIA, which blocked ∼75% of the total Ca2+ channel current, failed to cause a further decrease of the residual current. Met-enkephalin inhibited the ω-conotoxin GVIA-sensitive but not the ω-conotoxin-insensitive I Ba in rat intracardiac neurons. Dialysis of the cell with a GTP-free intracellular solution or preincubation of the neurons in Pertussis toxin (PTX) abolished the attenuation of I Ba by Met-enkephalin, suggesting the involvement of a PTX-sensitive Gprotein in the signal transduction pathway. The activation of μ-opioid receptors and subsequent inhibition of N-type Ca2+ channels in the soma and terminals of postganglionic intracardiac neurons is likely to inhibit the release of ACh and thereby regulate vagal transmission to the mammalian heart.


1991 ◽  
Vol 261 (2) ◽  
pp. C310-C318 ◽  
Author(s):  
Z. S. Agus ◽  
I. D. Dukes ◽  
M. Morad

The modulation of the transient outward K+ current (Ito) by divalent cations was studied in enzymatically isolated rat ventricular myocytes with the whole cell patch-clamp technique. At holding potentials negative to -70 mV, 1 mM Cd2+ suppressed Ito, whereas, at potentials positive to -50 mV, the current was augmented. These effects were caused by shifts in the voltage dependence of both activation and inactivation of Ito toward more positive potentials. Cd2+ also slowed the activation kinetics of Ito by shifting the voltage dependence of its rate of activation, but the rate of inactivation was unaffected. Other divalent cations produced similar shifts but at markedly different concentrations. Thus, in the millimolar range, a rightward shift of approximately 20 mV was produced by 3 Co2+, 5 Ni2+, and 10 Ca2+, whereas 10 microM concentrations of Cu2+ and Zn2+ produced equivalent shifts. Similar effects were seen in hippocampal neurons with micromolar concentrations of Zn2+. Thus divalent cations have marked and specific effects on the kinetics and voltage dependence of Ito and may serve as a regulatory mechanism in its activation, particularly in cells with resting potentials positive to -60 mV.


2000 ◽  
Vol 278 (1) ◽  
pp. H50-H59 ◽  
Author(s):  
J. T. Hulme ◽  
C. H. Orchard

The effect of acidosis on the transient outward K+ current ( Ito ) of rat ventricular myocytes has been investigated using the perforated patch-clamp technique. When the holding potential was −80 mV, depolarizing pulses to potentials positive to −20 mV activated Ito in subepicardial cells but activated little Ito in subendocardial cells. Exposure to an acid solution (pH 6.5) had no significant effect on Ito activated from this holding potential in either subepicardial or subendocardial cells. When the holding potential was −40 mV, acidosis significantly increased Ito at potentials positive to −20 mV in subepicardial cells but had little effect on Ito in subendocardial cells. The increase in Ito in subepicardial cells was inhibited by 10 mM 4-aminopyridine. In subepicardial cells, acidosis caused a +8.57-mV shift in the steady-state inactivation curve. It is concluded that in subepicardial rat ventricular myocytes acidosis increases the amplitude of Ito as a consequence of a depolarizing shift in the voltage dependence of inactivation.


Sign in / Sign up

Export Citation Format

Share Document