Maturational changes in endothelium-derived relaxations in newborn piglet pulmonary circulation

1993 ◽  
Vol 264 (2) ◽  
pp. H302-H309 ◽  
Author(s):  
T. Perreault ◽  
J. De Marte

It is accepted knowledge that the endothelium can profoundly affect vascular tone through the release of vasoactive substances. The maturational changes in the role of the endothelium-derived relaxing factor (EDRF) and ATP-dependent K+ channels in the neonatal pulmonary circulation were investigated in isolated perfused lungs from 1- and 7-day-old piglets. The EDRF inhibitor, N omega-nitro-L-arginine (L-NNA), had potent dose-dependent constrictor effects on the pulmonary vasculature with normal and raised tone. The constrictor effect of L-NNA was greater (P < 0.05) in the 1-day-old than in the 7-day-old lungs and was significantly (P < 0.005) attenuated by pretreatment with the EDRF precursor, L-arginine. Furthermore, we studied the possibility of developmental changes in the sensitivity of smooth muscle cells to EDRF by testing sodium nitroprusside, nitric oxide, and 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP). All caused a decrease in perfusion pressure, but only sodium nitroprusside elicited a greater (P < 0.01) effect in the 1-day-old. Endothelin-1 (ET-1) and bradykinin (BK) elicited dilator responses that were significantly (P < 0.05) reduced in the presence of L-NNA. Interestingly, the dilator response to ET-1 was more marked (P < 0.001) in the younger group, whereas no age difference was noted with BK. Finally, lemakalim, a K+ channel activator, caused a vasodilation of equal magnitude at both ages. In summary, EDRF and ATP-dependent K+ channels appear to play a role in the control of the newborn piglet pulmonary vasculature.(ABSTRACT TRUNCATED AT 250 WORDS)

1995 ◽  
Vol 269 (3) ◽  
pp. H805-H811 ◽  
Author(s):  
S. Najibi ◽  
R. A. Cohen

Endothelium-dependent relaxations to acetylcholine remain normal in the carotid artery of hypercholesterolemic rabbits, but unlike endothelium-dependent relaxations of normal rabbits, they are inhibited by charybdotoxin, a specific blocker of Ca(2+)-dependent K+ channels. Because nitric oxide (NO) is the mediator of endothelium-dependent relaxation and can activate Ca(2+)-dependent K+ channels directly or via guanosine 3',5'-cyclic monophosphate, the present study investigated the role of Ca(2+)-dependent K+ channels in relaxations caused by NO, sodium nitroprusside, and 8-bromoguanosine 3',5'-cyclic monophosphate (8-Brc-GMP) in hypercholesterolemic rabbit carotid artery. Isometric tension was measured in rabbit carotid artery denuded of endothelium from normal and hypercholesterolemic rabbits which were fed 0.5% cholesterol for 12 wk. Under control conditions, relaxations to all agents were similar in normal and hypercholesterolemic rabbit arteries. Charybdotoxin had no significant effect on relaxations of normal arteries to NO, sodium nitroprusside, or 8-BrcGMP, but the Ca(2+)-dependent K+ channel blocker significantly inhibited the relaxations caused by each of these agents in the arteries from hypercholesterolemic rabbits. By contrast, relaxations to the calcium channel blocker nifedipine were potentiated to a similar extent by charybdotoxin in both groups. In addition, arteries from hypercholesterolemic rabbits relaxed less than normal to sodium nitroprusside when contracted with depolarizing potassium solution. These results indicate that although nitrovasodilator relaxations are normal in the hypercholesterolemic rabbit carotid artery, they are mediated differently, and to a greater extent, by Ca(2+)-dependent K+ channels. These data also suggest that K+ channel-independent mechanism(s) are impaired in hypercholesterolemia.


1997 ◽  
Vol 92 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Masanari Shiramoto ◽  
Tsutomu Imaizumi ◽  
Yoshitaka Hirooka ◽  
Toyonari Endo ◽  
Takashi Namba ◽  
...  

1. It has been shown in animals that substance P as well as acetylcholine releases endothelium-derived nitric oxide and evokes vasodilatation and that ATP-induced vasodilatation is partially mediated by nitric oxide. The aim of this study was to examine whether vasodilator effects of substance P and ATP are mediated by nitric oxide in humans. 2. In healthy volunteers (n = 35), we measured forearm blood flow by a strain-gauge plethysmograph while infusing graded doses of acetylcholine, substance P, ATP or sodium nitroprusside into the brachial artery before and after infusion of NG-monomethyl-l-arginine (4 or 8 μmol/min for 5 min). In addition, we measured forearm blood flow while infusing substance P before and during infusion of l-arginine (10 mg/min, simultaneously), or before and 1 h after oral administration of indomethacin (75 mg). 3. Acetylcholine, substance P, ATP or sodium nitroprusside increased forearm blood flow in a dose-dependent manner. NG-Monomethyl-l-arginine decreased basal forearm blood flow and inhibited acetylcholine-induced vasodilatation but did not affect substance P-, ATP-, or sodium nitroprusside-induced vasodilatation. Neither supplementation of l-arginine nor pretreatment with indomethacin affected substance P-induced vasodilatation. 4. Our results suggest that, in the human forearm vessels, substance P-induced vasodilatation may not be mediated by either nitric oxide or prostaglandins and that ATP-induced vasodilatation may also not be mediated by nitric oxide.


1994 ◽  
Vol 266 (2) ◽  
pp. H590-H596 ◽  
Author(s):  
I. R. Hutcheson ◽  
T. M. Griffith

We have investigated the role of Ca(2+)- and ATP-sensitive K+ channels (KCa and KATP, respectively) in flow- and agonist-stimulated release of endothelium-derived relaxing factor (EDRF). Segments of rabbit abdominal aorta, perfused at constant flow with buffer containing indomethacin, were used as a source of EDRF in cascade bioassay, and responses to endothelium-dependent agonists were studied isometrically in rings of the same tissue in the absence of flow. Apamin, charybdotoxin (ChTX), and tetraethylammonium (TEA) were used to block a variety of low, medium, and high conductance KCa channels, and glibenclamide was used to block KATP channels. The effects of flow pulsatility were studied at pulse frequencies ranging from 0.15 to 9.75 Hz, and time-averaged shear stress was manipulated by adding dextran (80,000 mol wt) to the perfusate to increase its viscosity. Frequency-related EDRF release was maximal at approximately 5 Hz and attenuated by apamin, TEA, and ChTX, but not by glibenclamide. EDRF release stimulated by increased viscosity was attenuated by TEA, ChTX, and glibenclamide, but not by apamin. In marked contrast, EDRF release stimulated by acetylcholine and ATP was unaffected by blockade of either KCa or KATP channels. We conclude that a spectrum of KCa channel subtypes mediates endothelial transduction of the oscillatory component of pulsatile flow and that KATP channels may be additionally involved in the transduction of time-averaged shear stress. In contrast, agonist-stimulated endothelium-dependent relaxation is independent of K+ channel activation in rabbit aorta.


2000 ◽  
Vol 92 (3) ◽  
pp. 813-820 ◽  
Author(s):  
Hiroyuki Kinoshita ◽  
Toshizo Ishikawa ◽  
Yoshio Hatano

Background A class Ib antiarrhythmic drug, mexiletine, augments relaxations produced by adenosine triphosphate (ATP) sensitive K+ channel openers in isolated rat aortas, suggesting that it produces changes in the vasodilation mediated by ATP-sensitive K+ channels. Nitric oxide can induce its vasodilator effect via K+ channels, including ATP-sensitive K+ channels, in smooth muscle cells. Effects of mexiletine on arterial relaxations to nitric oxide donors, have not been studied. Therefore, the current study in isolated rat aortas was designed to (1) evaluate whether mexiletine augments relaxation in response to nitric oxide donors, including sodium nitroprusside, and (2) determine the role of K+ channels in mediating effects of mexiletine on such nitric oxide-mediated relaxation. Methods Rings of rat aortas without endothelia were suspended for isometric force recording. Concentration-response curves of sodium nitroprusside (10(-10) to 10(-5) M) and 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC-7; 10(-9) to 10(-5) M) were obtained in the absence and in the presence of mexiletine, in combination with a soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo [4,3,-a]quinoxaline-1-one (ODQ), or inhibitors for ATP-sensitive K+ channels (glibenclamide), inward rectifier K+ channels (BaCl2), delayed rectifier K+ channels (4-aminopyridine), large conductance Ca2+-dependent K+ channels (iberiotoxin), or small conductance Ca2+-dependent K+ channels (apamin). Results Mexiletine (10(-5) or 3 x 10(-5) M) augmented relaxations to sodium nitroprusside and NOC-7. In arteries treated with glibenclamide (10(-5) M), mexiletine (3 x 10(-5) M) did not affect relaxations to nitric oxide donors, whereas mexiletine augmented relaxations to sodium nitroprusside despite the presence of BaCl2 (10(-5) M), 4-aminopyridine (10(-3) M), iberiotoxin (5 x 10(-8) M) and apamin (5 x 10(-8) M). Relaxations to sodium nitroprusside were abolished by ODQ (5 x 10(-6) M), whereas these relaxations were augmented by mexiletine (3 x 10(-5) M) in arteries treated with ODQ (5 x 10(-6) M). Conclusions These results suggest that ATP-sensitive K+ channels in vascular smooth muscle, contribute to the augmented vasodilator effect of a nitric oxide donor, sodium nitroprusside induced by mexiletine, and that the vasodilator effect is produced, at least in part, via the guanylate cyclase-independent mechanism.


2001 ◽  
Vol 280 (2) ◽  
pp. F223-F230 ◽  
Author(s):  
Ruimin Gu ◽  
Yuan Wei ◽  
Houli Jiang ◽  
Michael Balazy ◽  
Wenhui Wang

We have used the patch-clamp technique to study the effect of dietary K intake on the apical K channels in the medullary thick ascending limb (mTAL) of rat kidneys. The channel activity, defined by the number of channels in a patch and the open probability ( NP o), of the 30- and 70-pS K channels, was 0.18 and 0.11, respectively, in the mTAL from rats on a K-deficient diet. In contrast, NP o of the 30- and 70-pS K channels increased to 0.60 and 0.80, respectively, in the tubules from animals on a high-K diet. The concentration of 20-hydroxyeicosatetraenoic acid (20-HETE) measured with gas chromatography-mass spectrometry was 0.8 pg/μg protein in the mTAL from rats on a high-K diet and increased significantly to 4.6 pg/μg protein in the tubules from rats on a K-deficient diet. Addition of N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) or 17-octadecynoic acid (17-ODYA), agents that inhibit the formation of 20-HETE, had no significant effect on the activity of the 30-pS K channels. However, DDMS/17-ODYA significantly increased the activity of the apical 70-pS K channel from 0.11 to 0.91 in the mTAL from rats on a K-deficient diet. In contrast, inhibition of the cytochrome P-450 metabolism of arachidonic acid increased NP o from 0.64 to 0.81 in the tubules from animals on a high-K diet. Furthermore, the sensitivity of the 70-pS K channel to 20-HETE was the same between rats on a high-K diet and on a K-deficient diet. Finally, the pretreatment of the tubules with DDMS increased NP o of the 70-pS K channels in the mTAL from rats on a K-deficient diet to 0.76. We conclude that an increase in 20-HETE production is involved in reducing the activity of the apical 70-pS K channels in the mTAL from rats on a K-deficient diet.


2001 ◽  
Vol 95 (1) ◽  
pp. 200-206 ◽  
Author(s):  
Hiroyuki Kinoshita ◽  
Hiroshi Iranami ◽  
Yoshiki Kimoto ◽  
Mayuko Dojo ◽  
Yoshio Hatano

Background The previous study by the authors showed that the class Ib antiarrhythmic drug lidocaine impairs but mexiletine augments vasorelaxation mediated by adenosine triphosphate-sensitive K+ channels. Lidocaine and mexiletine have different values of the negative logarithm of the drug-proton dissociation constant, indicating that the ion channel-blocking effects of these drugs under different pH levels may vary. However, the role of pH in the effects of lidocaine and mexiletine on vasodilation mediated by K+ channels has not been studied. Therefore, the current study was designed to examine whether the inhibition and augmentation of vasorelaxation in response to an adenosine triphosphate-sensitive K+ channel opener, levcromakalim, by the clinically relevant concentrations of lidocaine or mexiletine are modified by mild alkalinization or acidification in the isolated rat aorta. Methods Rings of the rat aorta without endothelium were suspended for isometric force recording. Three types of modified Krebs-Ringer solutions (pH 7.2, 7.4, and 7.6) were prepared by changing the composition of NaCl and NaHCO3. During contractions in response to phenylephrine (3 x 10(-7) M), relaxations in response to levcromakalim (10(-8) to 10(-5) M) were obtained. Lidocaine (10(-5) to 10(-4) M), mexiletine (10(-5) to 10(-4) M), or glibenclamide (10(-5) M) was applied 15 min before addition of phenylephrine. Results Relaxations in response to levcromakalim, which are abolished by the selective adenosine triphosphate-sensitive K+ channel antagonist glibenclamide (10(-5) M), were not different among the three pH groups. In the normal Krebs-Ringer solution of pH 7.4, lidocaine significantly reduced these relaxations in a concentration-dependent fashion. Alkalinization of pH 7.6 augmented the inhibitory effect of lidocaine on these relaxations, whereas acidification of pH 7.2 substantially abolished this effect. In contrast, mexiletine pH independently augmented relaxations in response to levcromakalim. Glibenclamide (10(-5) M) abolished these relaxations in arteries treated with mexiletine (10(-4) M) in any pH group. Conclusions These results suggest that even under conditions of such mild alkalosis or acidosis, vasorelaxation via adenosine triphosphate-sensitive K+ channels is dependent on pH in the presence of clinically relevant concentrations of lidocaine but not mexiletine.


1996 ◽  
Vol 270 (2) ◽  
pp. H423-H426 ◽  
Author(s):  
W. M. Armstead

The present study was designed to investigate the role of ATP-sensitive K+ channels in guanosine 3',5'-cyclic monophosphate (cGMP)-mediated pial artery vasodilation in newborn pigs equipped with a closed cranial window. Sodium nitroprusside (SNP) (10(-8), 10(-6) M), a nitrovasodilator, elicited pial artery dilation that was attenuated by the ATP-sensitive K+ channel antagonist glibenclamide (10(-6) M). On a percentage basis, these responses were 25 +/- 1% for the presence of SNP (10(-6) M) alone, whereas 15 +/- 1% dilation was observed for SNP (10(-6) M) in the presence of glibenclamide (n = 5 pigs). Dilation produced by the cGMP analogue, 8-BrcGMP (10(-8), 10(-6) M), was similarly attenuated by glibenclamide. SNP-induced pial dilation was accompanied by increased cortical periarachnoid cerebrospinal fluid (CSF) cGMP levels, and these biochemical changes were blocked by the soluble guanylate cyclase inhibitor, LY-83583 (10(-5) M). SNP (10(-6) M) alone increased CSF cGMP concentration from 407 +/- 14 to 956 +/- 41 fmol/ml, whereas SNP in the presence of LY-83583 yielded a CSF cGMP concentration of 340 +/- 13, which was no different from the control value of 335 +/- 23 fmol/ml (n = 5 pigs). SNP-induced pial dilation was blunted by LY-83583, whereas 8-BrcGMP-induced dilation was unchanged. Cromakalim (10(-8), 10(-6) M), an ATP-sensitive K+ channel agonist, produced dilation that was blocked by glibenclamide (24 +/- 1 vs. 5 +/- 1% for cromakalim 10(-6) M, in the absence and presence of glibenclamide, respectively, n = 5). These data indicate that activation of ATP-sensitive K+ channels contribute to cGMP-mediated pial artery dilation.


1992 ◽  
Vol 262 (2) ◽  
pp. H511-H516 ◽  
Author(s):  
J. Haynes ◽  
J. Robinson ◽  
L. Saunders ◽  
A. E. Taylor ◽  
S. J. Strada

In this study, the role of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) in cAMP-dependent relaxation was assessed in the isolated-perfused rat lung using a PKA inhibitor, Rp-cAMPS, 8-bromo-cAMP (8-BrcAMP), and the diterpene activator of adenylate cyclase (AC), forskolin (FSK). A role for K+ channels was also assessed with the nonselective K+ channel blocker, tetraethylammonium (TEA, 10 mM), and an ATP-sensitive K+ channel inhibitor, glibenclamide (GLI, 100 microM). Both 8-BrcAMP (0.1-1.0 mM) and RSK (0.1-10 microM) dose-dependently attenuated the peak pressor response to alveolar hypoxia (HPR). Rp-cAMPS potentiated the HPR and attenuated 8-BrcAMP-mediated vasodilation but had no effect on FSK-mediated vasodilation. FSK-mediated vasodilation was not mimicked by 1,9-dideoxy-FSK, which is biologically inactive on AC but alters K+ channels identically to FSK, nor was it attenuated by the platelet-activating factor antagonist SRI 63-441 or the cyclooxygenase inhibitor indomethacin. TEA, but not GLI, attenuated FSK-mediated vasodilation. Similarly, TEA attenuated 8-BrcAMP-mediated vasodilation. These results support roles for PKA and indirect gating of a non-ATP-sensitive K+ channel in mediating cAMP-dependent pulmonary vasodilation.


2002 ◽  
Vol 97 (4) ◽  
pp. 882-886 ◽  
Author(s):  
Mayuko Dojo ◽  
Hiroyuki Kinoshita ◽  
Hiroshi Iranami ◽  
Katsutoshi Nakahata ◽  
Yoshiki Kimoto ◽  
...  

Background The effect of ketamine on vasodilation mediated by adenosine triphosphate (ATP)-sensitive K(+) channels has not been studied. The present study was designed to determine whether ketamine might stereoselectively affect vasorelaxation induced by an ATP-sensitive K(+) channel opener in the isolated rat aorta. Methods Rings of the rat aorta with or without endothelium were suspended for isometric force recording. During contraction to phenylephrine (3 x 10(-7) M), vasorelaxation in response to an ATP-sensitive K(+) channel opener levcromakalim (10(-8) to 10(-5) M) or a nitric oxide donor sodium nitroprusside (10(-10) to 10(-5) M) was obtained. Glibenclamide (10(-5) M), S(+) ketamine (10(-4) M), or ketamine racemate (10(-5) to 10(-4) M) was applied 15 min before addition of phenylephrine. Results Vasorelaxation induced by levcromakalim was completely abolished by an ATP-sensitive K(+) channel antagonist glibenclamide (10(-5) M) in the aorta with or without endothelium. Ketamine racemate (3 x 10(-5) to 10(-4) M) significantly inhibited this vasorelaxation in a concentration-dependent fashion, whereas S(+) ketamine did not affect the relaxation. However, the highest concentration of ketamine racemate and S(+) ketamine used in the present study did not alter vasorelaxation in response to sodium nitroprusside in the aorta without endothelium. Conclusion In the isolated rat aorta, clinically relevant concentrations of ketamine racemate can inhibit relaxation induced by an ATP-sensitive K(+) channel opener, whereas S(+) ketamine did not produce any inhibitory effect on this vasorelaxation. These results suggest that ketamine stereoselectively alters vasodilation ATP-sensitive K(+) channels in the conduit artery.


2003 ◽  
Vol 98 (5) ◽  
pp. 1139-1146 ◽  
Author(s):  
Fang Xu ◽  
Zayra Garavito-Aguilar ◽  
Esperanza Recio-Pinto ◽  
Jin Zhang ◽  
Thomas J. J. Blanck

Background Local anesthetics (LAs) are known to inhibit voltage-dependent Na+ channels, as well as K+ and Ca2+ channels, but with lower potency. Since cellular excitability and responsiveness are largely determined by intracellular Ca2+ availability, sites along the Ca2+ signaling pathways may be targets of LAs. This study was aimed to investigate the LA effects on depolarization and receptor-mediated intracellular Ca2+ changes and to examine the role of Na+ and K+ channels in such functional responses. Methods Effects of bupivacaine, ropivacaine, mepivacaine, and lidocaine (0.1-2.3 mm) on evoked [Ca2+](i) transients were investigated in neuronal SH-SY5Y cell suspensions using Fura-2 as the intracellular Ca2+ indicator. Potassium chloride (KCl, 100 mm) and carbachol (1 mm) were individually or sequentially applied to evoke increases in intracellular Ca2+. Coapplication of LA and Na+/K+ channel blockers was used to evaluate the role of Na+ and K+ channels in the LA effect on the evoked [Ca2+](i) transients. Results All four LAs concentration-dependently inhibited both KCl- and carbachol-evoked [Ca2+](i) transients with the potency order bupivacaine &gt; ropivacaine &gt; lidocaine &gt;/= mepivacaine. The carbachol-evoked [Ca2+](i) transients were more sensitive to LAs without than with a KCl prestimulation, whereas the LA-effect on the KCl-evoked [Ca2+](i) transients was not uniformly affected by a carbachol prestimulation. Na+ channel blockade did not alter the evoked [Ca2+](i) transients with or without a LA. In the absence of LA, K+ channel blockade increased the KCl-, but decreased the carbachol-evoked [Ca2+](i) transients. A coapplication of LA and K+ channel blocker resulted in larger inhibition of both KCl- and carbachol-evoked [Ca2+](i) transients than by LA alone. Conclusions Different and overlapping sites of action of LAs are involved in inhibiting the KCl- and carbachol-evoked [Ca2+](i) transients, including voltage-dependent Ca2+ channels, a site associated with the caffeine-sensitive Ca2+ store and a possible site associated with the IP(3)-sensitive Ca2+ store, and a site in the muscarinic pathway. K+ channels, but not Na+ channels, seem to modulate the evoked [Ca2+](i) transients, as well as the LA-effects on such responses.


Sign in / Sign up

Export Citation Format

Share Document