Electrical interactions between a rabbit atrial cell and a nodal cell model

1998 ◽  
Vol 274 (6) ◽  
pp. H2152-H2162 ◽  
Author(s):  
Ronald W. Joyner ◽  
Rajiv Kumar ◽  
David A. Golod ◽  
Ronald Wilders ◽  
Habo J. Jongsma ◽  
...  

Atrial activation involves interactions between cells with automaticity and slow-response action potentials with cells that are intrinsically quiescent with fast-response action potentials. Understanding normal and abnormal atrial activity requires an understanding of this process. We studied interactions of a cell with spontaneous activity, represented by a “real-time” simulation of a model of the rabbit sinoatrial (SA) node cell, simultaneously being electrically coupled via our “coupling clamp” circuit to a real, isolated atrial myocyte with variations in coupling conductance ( G c) or stimulus frequency. The atrial cells were able to be driven at a regular rate by a single SA node model (SAN model) cell. Critical G c for entrainment of the SAN model cell to a nonstimulated atrial cell was 0.55 ± 0.05 nS ( n = 7), and the critical G c that allowed entrainment when the atrial cell was directly paced at a basic cycle length of 300 ms was 0.32 ± 0.01 nS ( n = 7). For each atrial cell we found periodic phenomena of synchronization other than 1:1 entrainment when G c was between 0.1 and 0.3 nS, below the value required for frequency entrainment, when the atrial cell was directly driven at a basic cycle length of either 300 or 600 ms. In conclusion, the high input resistance of the atrial cells allows successful entrainment of nodal and atrial cells at low values of G c, but further uncoupling produces arrhythmic interactions.

1981 ◽  
Vol 78 (1) ◽  
pp. 19-42 ◽  
Author(s):  
J R Hume ◽  
W Giles

Single cells from the bullfrog (Rana catesbeiana) atrium have been prepared by using a modification of the enzymatic dispersion procedure described by Bagby et al. (1971. Nature [Long.]. 234:351--352) and Fay and Delise (1973. Proc. Natl. Acad. Sci. U.S.A. 70:641--645). Visualization of relaxed cells via phase-contrast or Nomarski optics (magnification, 400--600) indicates that cells range between 150 and 350 micrometers in length and 4 and 7 micrometers in diameter. The mean sarcomere length in relaxed, quiescent atrial cells in 2.05 micrometer. Conventional electrophysiological measurements have been made. In normal Ringer's solution (2.5 mM K+, 2.5 mM Ca++) acceptable cells have stable resting potentials of about -88 mV, and large (125 mV) long-duration (approximately 720 ms) action potentials can be elicited. The Vm vs. log[K+]0 relation obtained from isolated cells is similar to that of the intact atrium. The depolarizing phase of the action potential of isolated atrial myocytes exhibits two pharmacologically separable components: tetrodotoxin (10(-6) g/ml) markedly suppresses the initial regenerative depolarization, whereas verapamil (3 x 10(-6) M) inhibits the secondary depolarization and reduce the plateau height. A bridge circuit was used to estimate the input resistance (220 +/- 7 M omega) and time constant 20 +/- 7 ms) of these cells. Two-microelectrode experiments have revealed small differences in the electrotonic potentials recorded simultaneously at two different sites within a single cell. The equations for a linear, short cable were used to calculate the electrical constants of relaxed, single atrial cells: lambda = 921.3 +/- 29.5 micrometers; Ri = 118.1 +/- 24.5 omega cm; Rm = 7.9 +/- 1.2 x 10(3) omega cm2; Cm = 2.2 +/- 0.3 mu Fcm-2. These results and the atrial cell morphology suggest that this preparation may be particularly suitable for voltage-clamp studies.


2017 ◽  
Vol 3 (2) ◽  
pp. 95-98
Author(s):  
Gerald Schwaderlapp ◽  
Tobias Oesterlein ◽  
Olaf Dössel ◽  
Luik Armin ◽  
Claus Schmitt ◽  
...  

AbstractIntracardiac electrogram recordings during atrial fibrillation (AFib) are characterized by irregular rhythms and complex morphologies. Hence, analysis in the time domain is a difficult task. The so called dominant frequency DF is a spectrum based approach that aims at finding the most relevant frequency in a signal providing information about the rate and dynamics of AFib. However, in recent years various studies reported controversial results regarding the clinical relevance of the DF. In this work, a definition of the DF at a fundamental scale is proposed as the rate at which action potentials are triggered in atrial cells. The most common method to estimate the DF in literature, labeled as DFSpec, is examined in comparison to the proposed definition. A signal processing study using synthetic signals verified that the DFSpec is stable for all changes in morphology of atrial activations. However, it is also demonstrated that the DFSpec becomes unstable for variations above 20% in the cycle length of a signal. Spectrum based DF estimation should be interpreted in a critical manner and is not advisable for study endpoints or clinical markers.


1995 ◽  
Vol 269 (5) ◽  
pp. H1735-H1742 ◽  
Author(s):  
E. I. Watanabe ◽  
H. Honjo ◽  
T. Anno ◽  
M. R. Boyett ◽  
I. Kodama ◽  
...  

To investigate the electrotonic modulation of sinoatrial (SA) node pacemaker activity by atrial muscle, single or multiple (2-7) SA node cells isolated from rabbit hearts were connected to a membrane model [resistance-capacitance (R-C) circuit] of an atrial cell through an external circuit that mimics the gap junctional conductance (Gc) between cells. When Gc was 0 nS (uncoupled conditions), all the preparations generated regular and stable spontaneous action potentials with a mean cycle length (SCL) of 263 +/- 45 ms (+/- SD, n = 35). Step increases of Gc were associated with a progressive prolongation of SCL. At sufficiently high values of Gc, the spontaneous activity became irregular and finally stopped. We defined the threshold Gc causing an appreciable SCL irregularity as the minimum Gc at which the ratio of SD to mean of SCL was > 0.3. The threshold Gc for a single SA node cell was calculated to be 0.58 nS. In the presence of acetylcholine (ACh; 0.05-0.2 microM), the coupling-induced inhibition of spontaneous activity was greatly increased, and the threshold Gc for a single SA node cell was decreased in a concentration-dependent manner. These findings show that the pacemaker activity of SA node cells is easily inhibited when the cells are coupled to a passive atrial cell model and the inhibition is amplified by ACh. Computer simulation using a modified Oxsoft HEART model indicates that the passive atrial cell model acts as a current sink, imposing a substantial outward current on the SA node cell, and ACh amplifies the effect by activating an additional outward current.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
T Vinogradova ◽  
K Tarasov ◽  
D Riordon ◽  
Y Tarasova ◽  
E Lakatta

Abstract   The spontaneous beating rate of rabbit sinoatrial node cells (SANC) is regulated by local subsarcolemmal calcium releases (LCRs) from sarcoplasmic reticulum (SR). LCRs appear during diastolic depolarization (DD) and activate an inward sodium/calcium exchange current which increases DD rate and thus accelerates spontaneous SANC firing. High basal level of protein kinase A and calcium/calmodulin-dependent protein kinase II phosphorylation are required to sustain basal LCRs and normal spontaneous SANC firing. Recently we discovered that basal PKC activation is also obligatory for cardiac pacemaker function: inhibition of PKC activity by broad spectrum PKC inhibitors Bis I or calphostin C markedly suppressed SR calcium cycling and decreased or abolished spontaneous beating of freshly isolated rabbit SANC. Here we studied which PKC isoforms mediate PKC-dependent effects on cardiac pacemaker cell automaticity. The PKC superfamily consists of 3 major subgroups: conventional, novel and atypical. All PKC isoforms were detected at the RNA level (RT-qPCR) in the rabbit SA node and ventricle, and expression levels were comparable in both tissues. Expression of PKCβ, however, was markedly higher in the rabbit SA node, compared to other PKC isoenzymes in either tissue. We verified expression of conventional PKC (α, β) and novel PKC-delta at the protein level in SANC and ventricular myocytes (VM). Western blot confirmed RNA results, showing a 6-fold higher PKCβ protein abundance in SANC compared to VM. Expression of PKCα protein was similar in both cell types, while PKC-delta protein was more abundant in VM. To study whether PKCβ regulates spontaneous beating of SANC we employed selective inhibitor of conventional (α, β, gamma) PKC isoforms Go6976 (10 μmol/L), which had no effects on either LCR characteristics (confocal microscopy, calcium indicator Fluo-3AM) or spontaneous beating of freshly isolated rabbit SANC (perforated patch-clamp technique). Because selective PKC-delta inhibitors are not available, we explored effects of PKC-delta inhibition comparing effects of Go6976 (the inhibitor of conventional PKCs) and Go6983, which inhibits conventional PKCs and PKC-delta. In contrast to Go6976, Go6983 (5 μmol/L) markedly decreased the LCR size (from 7.1±0.4 to 4.5±0.3 μm) and number per each spontaneous cycle (from 1.3±0.1 to 0.8±0.1). It also markedly increased the LCR period (time from the prior AP-induced calcium transient to the subsequent LCR) which was paralleled by an increase in the spontaneous SANC cycle length. Rottlerin, another PKC-delta inhibitor, produced similar effects on LCR characteristics, and markedly and time-dependently decreased DD rate, leading to an increase in the spontaneous cycle length, and finally abrogated the spontaneous SANC firing. Thus, our data indicate that basal activity of PKC-delta, but not that of PKCβ, is essential for generation of LCRs and normal spontaneous firing of cardiac pacemaker cells. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Intramural Research Program, National Institute on Aging, National Institute of Health, USA


1985 ◽  
Vol 54 (2) ◽  
pp. 245-260 ◽  
Author(s):  
C. E. Stansfeld ◽  
D. I. Wallis

The active and passive membrane properties of rabbit nodose ganglion cells and their responsiveness to depolarizing agents have been examined in vitro. Neurons with an axonal conduction velocity of less than 3 m/s were classified as C-cells and the remainder as A-cells. Mean axonal conduction velocities of A- and C-cells were 16.4 m/s and 0.99 m/s, respectively. A-cells had action potentials of brief duration (1.16 ms), high rate of rise (385 V/s), an overshoot of 23 mV, and relatively high spike following frequency (SFF). C-cells typically had action potentials with a "humped" configuration (duration 2.51 ms), lower rate of rise (255 V/s), an overshoot of 28.6 mV, an after potential of longer duration than A-cells, and relatively low SFF. Eight of 15 A-cells whose axons conducted at less than 10 m/s had action potentials of longer duration with a humped configuration; these were termed Ah-cells. They formed about 10% of cells whose axons conducted above 2.5 m/s. The soma action potential of A-cells was blocked by tetrodotoxin (TTX), but that of 6/11 C-cells was unaffected by TTX. Typically, A-cells showed strong delayed (outward) rectification on passage of depolarizing current through the soma membrane and time-dependent (inward) rectification on inward current passage. Input resistance was thus highly sensitive to membrane potential close to rest. In C-cells, delayed rectification was not marked, and slight time-dependent rectification occurred in only 3 of 25 cells; I/V curves were normally linear over the range: resting potential to 40 mV more negative. Data on Ah-cells were incomplete, but in our sample of eight cells time-dependent rectification was absent or mild. C-cells had a higher input resistance and a higher neuronal capacitance than A-cells. In a proportion of A-cells, RN was low at resting potential (5 M omega) but increased as the membrane was hyperpolarized by a few millivolts. A-cells were depolarized by GABA but were normally unaffected by 5-HT or DMPP. C-cells were depolarized by GABA in a similar manner to A-cells but also responded strongly to 5-HT; 53/66 gave a depolarizing response, and 3/66, a hyperpolarizing response. Of C-cells, 75% gave a depolarizing response to DMPP.(ABSTRACT TRUNCATED AT 400 WORDS)


1985 ◽  
Vol 54 (6) ◽  
pp. 1375-1382 ◽  
Author(s):  
C. W. Bourque ◽  
J. C. Randle ◽  
L. P. Renaud

Intracellular recordings of rat supraoptic nucleus neurons were obtained from perfused hypothalamic explants. Individual action potentials were followed by hyperpolarizing afterpotentials (HAPs) having a mean amplitude of -7.4 +/- 0.8 mV (SD). The decay of the HAP was approximated by a single exponential function having a mean time constant of 17.5 +/- 6.1 ms. This considerably exceeded the cell time constant of the same neurons (9.5 +/- 0.8 ms), thus indicating that the ionic conductance underlying the HAP persisted briefly after each spike. The HAP had a reversal potential of -85 mV and was unaffected by intracellular Cl- ionophoresis of during exposure to elevated extracellular concentrations of Mg2+. In contrast, the peak amplitude of the HAP was proportional to the extracellular Ca2+ concentration and could be reversibly eliminated by replacing Ca2+ with Co2+, Mn2+, or EGTA in the perfusion fluid. During depolarizing current pulses, evoked action potential trains demonstrated a progressive increase in interspike intervals associated with a potentiation of successive HAPs. This spike frequency adaptation was reversibly abolished by replacing Ca2+ with Co2+, Mn2+, or EGTA. Bursts of action potentials were followed by a more prolonged afterhyperpolarization (AHP) whose magnitude was proportional to the number of impulses elicited (greater than 20 Hz) during a burst. Current injection revealed that the AHP was associated with a 20-60% decrease in input resistance and showed little voltage dependence in the range of -70 to -120 mV. The reversal potential of the AHP shifted with the extracellular concentration of K+ [( K+]o) with a mean slope of -50 mV/log[K+]o.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 258 (1) ◽  
pp. H145-H152 ◽  
Author(s):  
O. F. Schanne ◽  
M. Lefloch ◽  
B. Fermini ◽  
E. Ruiz-Petrich

We compared the passive electrical properties of isolated ventricular myocytes (resting potential -65 mV, fast action potentials, and no spontaneous activity) with those of 2- to 7-day-old cultured ventricle cells from neonatal rats (resting potential -50 mV, slow action potentials, and presence of spontaneous activity). In myocytes the specific membrane capacity was 0.99 microF/cm2, and the specific membrane resistance increased from 2.46 k omega.cm2 at -65 mV to 7.30 k omega.cm2 at -30 mV. In clusters, the current-voltage relationships measured under current-clamp conditions showed anomalous rectification and the input resistance decreased from 1.05 to 0.48 M omega when external K+ concentration was increased from 6 to 100 mM. Using the model of a finite disk we determined the specific membrane resistance (12.9 k omega.cm2), the effective membrane capacity (17.8 microF/cm2), and the lumped resistivity of the disk interior (1,964 omega.cm). We conclude that 1) the voltage dependence of the specific membrane resistance cannot completely explain the membrane resistance increase that accompanies the appearance of spontaneous activity; 2) a decrease of the inwardly rectifying conductance (gk1) is mainly responsible for the increase in the specific membrane resistance and depolarization; and 3) approximately 41% of the inward-rectifying channels are electrically silent when spontaneous activity develops in explanted ventricle cells.


1988 ◽  
Vol 255 (6) ◽  
pp. H1342-H1348
Author(s):  
C. Giorgi ◽  
M. Vermeulen ◽  
R. Cardinal ◽  
P. Savard ◽  
R. Nadeau ◽  
...  

The properties and determinants of hysteresis during ventricular effective refractory period (VERP) measurements by an extrastimulus technique were determined in 15 anesthetized open-chest dogs as well as in isolated ventricular muscle (n = 6). VERP was determined both by decreasing the S1-S2 interval and also by increasing S1S2. Hysteresis was then calculated by subtracting the VERP obtained with the decreasing S1S2 from the VERP obtained with the increasing S1S2. The effects of basic cycle length, pulse width, stimulation intensity, and the number of basic drives on VERP and hysteresis were evaluated. VERP was shorter for long pulse width, high stimulation intensities, and shorter basic cycle lengths. These modifications were not associated with significant changes of hysteresis. VERP was shorter during decreasing S1S2 than during increasing S1S2. Hysteresis was greater with 6 basic drive cycles than with 12 (P less than 0.001) in both in vivo and in vitro preparations. The data suggest that 1) hysteresis occurs during VERP measurements; 2) hysteresis is independent of stimulation modality; and 3) hysteresis decreases with the number of basic drive cycles.


2001 ◽  
Vol 86 (2) ◽  
pp. 629-640 ◽  
Author(s):  
Muthukrishnan Renganathan ◽  
Theodore R. Cummins ◽  
Stephen G. Waxman

C-type dorsal root ganglion (DRG) neurons can generate tetrodotoxin-resistant (TTX-R) sodium-dependent action potentials. However, multiple sodium channels are expressed in these neurons, and the molecular identity of the TTX-R sodium channels that contribute to action potential production in these neurons has not been established. In this study, we used current-clamp recordings to compare action potential electrogenesis in Nav1.8 (+/+) and (−/−) small DRG neurons maintained for 2–8 h in vitro to examine the role of sodium channel Nav1.8 (α-SNS) in action potential electrogenesis. Although there was no significant difference in resting membrane potential, input resistance, current threshold, or voltage threshold in Nav1.8 (+/+) and (−/−) DRG neurons, there were significant differences in action potential electrogenesis. Most Nav1.8 (+/+) neurons generate all-or-none action potentials, whereas most of Nav1.8 (−/−) neurons produce smaller graded responses. The peak of the response was significantly reduced in Nav1.8 (−/−) neurons [31.5 ± 2.2 (SE) mV] compared with Nav1.8 (+/+) neurons (55.0 ± 4.3 mV). The maximum rise slope was 84.7 ± 11.2 mV/ms in Nav1.8 (+/+) neurons, significantly faster than in Nav1.8 (−/−) neurons where it was 47.2 ± 1.3 mV/ms. Calculations based on the action potential overshoot in Nav1.8 (+/+) and (−/−) neurons, following blockade of Ca2+ currents, indicate that Nav1.8 contributes a substantial fraction (80–90%) of the inward membrane current that flows during the rising phase of the action potential. We found that fast TTX-sensitive Na+ channels can produce all-or-none action potentials in some Nav1.8 (−/−) neurons but, presumably as a result of steady-state inactivation of these channels, electrogenesis in Nav1.8 (−/−) neurons is more sensitive to membrane depolarization than in Nav1.8 (+/+) neurons, and, in the absence of Nav1.8, is attenuated with even modest depolarization. These observations indicate that Nav1.8 contributes substantially to action potential electrogenesis in C-type DRG neurons.


1979 ◽  
Vol 80 (1) ◽  
pp. 287-297
Author(s):  
FREDERICK N. QUANDT ◽  
HOWARD L. GILLARY

Two general classes of light-evoked responses were recorded intracellularly from the retina of Strombus luhuanus. In one class, retinal illumination caused depolarization, the amplitude of which was graded with light intensity. In the other, it produced hyperpolarization and concomitant inhibition of repetitive action potentials. There were two types of depolarizing waveform. Each was associated with a different type of intraccllular recording site, characterized on the basis of electrical properties in the dark. In general, the type of response with a more rapid rate of decay was recorded from a site which exhibited a lower resting potential, higher input resistance, and longer ‘membrane charging time.’ The two depolarizing responses and the hyperpolarizing response apparently each arose from a different type of neurone. The depolarizing types, at least one of which is a photoreceptor, apparently give rise to the cornea-negativity of the electroretinogram and ‘on’ activity in the optic nerve fibres. The hyperpolarizing type apparently mediates ‘off’ activity in the optic nerve.


Sign in / Sign up

Export Citation Format

Share Document