scholarly journals Cardiac microvascular endothelial cells express α-smooth muscle actin and show low NOS III activity

1999 ◽  
Vol 276 (5) ◽  
pp. H1755-H1768 ◽  
Author(s):  
Hiroshi Ando ◽  
Thomas Kubin ◽  
Wolfgang Schaper ◽  
Jutta Schaper

We established a culture system of porcine coronary microvascular endothelial cells (MVEC) with high cellular yield and purity >98%. Endothelial origin was confirmed by immunostaining, immunoblotting and fluorescence-activated cell sorter (FACS) analysis using low-density lipoprotein uptake, CD31, von Willebrand factor, and the lectin Dolichos biflorus agglutinin. MVEC were positive for α-smooth muscle actin in culture and in myocardium, as confirmed by FACS. Of the primary MVEC, ∼30% expressed nitric oxide synthase (NOS) III in numbers decreasing from the first passage (6 ± 1%) to the second passage (4 ± 1%; P < 0.001 vs. primary isolates), whereas ∼100% of aortic endothelial cells (AEC) expressed NOS III. In AEC, NOS III activity (pmol citrulline ⋅ mg protein−1 ⋅ min−1) was 80 ± 10 and was nearly abolished in the absence of calcium (5 ± 1, P < 0.001). In primary MVEC, however, NOS III activity in the presence and absence of calcium was 20 ± 4 and 25 ± 5, respectively. We conclude that cardiac MVEC, in contrast to AEC, contain α-smooth muscle actin, show low-grade NOS III activity, and provide a suitable in vitro system for the study of endothelial pathophysiology.

1997 ◽  
Vol 138 (3) ◽  
pp. 707-717 ◽  
Author(s):  
David W. Dawson ◽  
S. Frieda A. Pearce ◽  
Ruiqin Zhong ◽  
Roy L. Silverstein ◽  
William A. Frazier ◽  
...  

Thrombospondin-1 (TSP-1) is a naturally occurring inhibitor of angiogenesis that is able to make normal endothelial cells unresponsive to a wide variety of inducers. Here we use both native TSP-1 and small antiangiogenic peptides derived from it to show that this inhibition is mediated by CD36, a transmembrane glycoprotein found on microvascular endothelial cells. Both IgG antibodies against CD36 and glutathione-S-transferase–CD36 fusion proteins that contain the TSP-1 binding site blocked the ability of intact TSP-1 and its active peptides to inhibit the migration of cultured microvascular endothelial cells. In addition, antiangiogenic TSP-1 peptides inhibited the binding of native TSP-1 to solid phase CD36 and its fusion proteins, as well as to CD36-expressing cells. Additional molecules known to bind CD36, including the IgM anti-CD36 antibody SM∅, oxidized (but not unoxidized) low density lipoprotein, and human collagen 1, mimicked TSP-1 by inhibiting the migration of human microvascular endothelial cells. Transfection of CD36-deficient human umbilical vein endothelial cells with a CD36 expression plasmid caused them to become sensitive to TSP-1 inhibition of their migration and tube formation. This work demonstrates that endothelial CD36, previously thought to be involved only in adhesion and scavenging activities, may be essential for the inhibition of angiogenesis by thrombospondin-1.


1984 ◽  
Vol 99 (6) ◽  
pp. 2034-2040 ◽  
Author(s):  
J C Voyta ◽  
D P Via ◽  
C E Butterfield ◽  
B R Zetter

Acetylated-low density lipoprotein (Ac-LDL) is taken up by macrophages and endothelial cells via the "scavenger cell pathway" of LDL metabolism. In this report, aortic and microvascular endothelial cells internalized and degraded 7-15 times more [125I]-Ac-LDL than did smooth muscle cells or pericytes. Bound [125I]-Ac-LDL was displaced by unlabeled Ac-LDL, but not unmodified LDL. The ability to identify endothelial cells based on their increased metabolism of Ac-LDL was examined using Ac-LDL labeled with the fluorescent probe 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (Dil-Ac-LDL). When cells were incubated with 10 micrograms/ml Dil-Ac-LDL for 4 h at 37 degrees C and subsequently examined by fluorescence microscopy, capillary and aortic endothelial cells were brilliantly fluorescent whereas the fluorescent intensity of retinal pericytes and smooth muscle cells was only slightly above background levels. Dil-Ac-LDL at the concentration used for labeling cells had no effect on endothelial cell growth rate. When primary cultures of bovine adrenal capillary cells were labeled with 10 micrograms/ml of Dil-Ac-LDL for 4 h at 37 degrees C, then trypsinized and subjected to fluorescence-activated cell sorting, pure cultures of capillary endothelial cells could be obtained. Utilizing this method, large numbers of early passage microvascular endothelial cells can be obtained in significantly less time than with conventional methods.


2018 ◽  
Vol 315 (5) ◽  
pp. H1287-H1292 ◽  
Author(s):  
Yuhao Zhang ◽  
Xiaoyu Dong ◽  
Jasmine Shirazi ◽  
Jason P. Gleghorn ◽  
Krithika Lingappan

Abnormal pulmonary vascular development is a critical factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Despite the well-established sex-specific differences in the incidence of BPD, the molecular mechanism(s) behind these are not completely understood. Exposure to a high concentration of oxygen (hyperoxia) contributes to BPD and creates a profibrotic environment in the lung. Our objective was to elucidate the sex-specific differences in neonatal human pulmonary microvascular endothelial cells (HPMECs) in normoxic and hyperoxic conditions, including the propensity for endothelial-to-mesenchymal transition. HPMECs (18- to 24-wk gestation donors, 6 male donors and 5 female donors) were subjected to hyperoxia (95% O2 and 5% CO2) or normoxia (air and 5% CO2) up to 72 h. We assessed cell migration and angiogenesis at baseline. Cell proliferation, viability, and expression of endothelial (CD31) and fibroblast markers (α-smooth muscle actin) were measured upon exposure to hyperoxia. Female HPMECs had significantly higher cell migration when assessed by the wound healing assay (40.99 ± 4.4%) compared with male HPMECs (14.76 ± 3.7%) and showed greater sprouting (1710 ± 962 μm in female cells vs. 789 ± 324 in male cells) compared with male endothelial cells in normoxia. Hyperoxia exposure decreased cell viability (by 9.8% at 48 h and 11.7% at 72 h) and proliferation (by 26.7% at 72 h) markedly in male HPMECs, whereas viability was sustained in female endothelial cells. There was greater expression of α-smooth muscle actin (2.5-fold) and decreased expression (5-fold) of CD31 in male HPMECs upon exposure to hyperoxia. The results indicate that cellular sex affects response in HPMECs in normoxia and hyperoxia. NEW & NOTEWORTHY Cellular sex affects response in human neonatal pulmonary microvascular endothelial cells in normoxia and hyperoxia. Under normoxic conditions, female human neonatal pulmonary microvascular endothelial cells display greater migration and angiogenic sprouting compared with male endothelial cells. Compared with female endothelial cells, hyperoxia exposure decreased cell viability and proliferation and increased α-smooth muscle actin and decreased CD31 expression in male endothelial cells, indicating an increased endothelial-mesenchymal transition.


1992 ◽  
Vol 103 (2) ◽  
pp. 521-529 ◽  
Author(s):  
E. Arciniegas ◽  
A.B. Sutton ◽  
T.D. Allen ◽  
A.M. Schor

Alpha-smooth muscle actin is considered a reliable marker for distinguishing between arterial smooth muscle and endothelial cells. Several authors have reported heterogeneity in the expression of this actin isoform in atherosclerotic lesions. Such heterogeneity appears to result from the presence of different smooth muscle cell phenotypes (contractile and synthetic) in these lesions. In the present study, we show that bovine aortic endothelial cells, which are characterised by the presence of Factor VIII-related antigen (FVIII) and by the absence of alpha-smooth muscle actin (alpha-SM actin) may be induced to express the latter when exposed to TGF-beta 1. FVIII was detected by immunofluorescence, alpha-SM actin was detected by immunofluorescence and immunoblotting. The number of cells expressing alpha-SM actin increased with time of incubation with TGF-beta 1, and this increase occurred concomitantly with a decrease in the expression of FVIII. Double immunofluorescence demonstrated the presence of cells that expressed both FVIII and alpha-SM actin after 5 days of incubation with TGF-beta 1. With longer incubation times (10-20 days) the loss of FVIII expression was complete and over 90% of the cells expressed alpha-SM actin. Ultrastructurally, cells in control cultures showed the typical features of endothelial cells. In the TGF-beta 1-treated cultures, cells which appeared indistinguishable from contractile and synthetic smooth muscle cells were observed. Withdrawal of TGF-beta 1 after 10 days incubation resulted in the re-appearance of polygonal cells which were FVIII-positive and alpha-SM actin-negative.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 12 ◽  
Author(s):  
Tyler M. Lu ◽  
José Gabriel Barcia Durán ◽  
Sean Houghton ◽  
Shahin Rafii ◽  
David Redmond ◽  
...  

Brain microvascular endothelial cells (BMECs) possess unique properties that are crucial for many functions of the blood-brain-barrier (BBB) including maintenance of brain homeostasis and regulation of interactions between the brain and immune system. The generation of a pure population of putative brain microvascular endothelial cells from human pluripotent stem cell sources (iBMECs) has been described to meet the need for reliable and reproducible brain endothelial cells in vitro. Human pluripotent stem cells (hPSCs), embryonic or induced, can be differentiated into large quantities of specialized cells in order to study development and model disease. These hPSC-derived iBMECs display endothelial-like properties, such as tube formation and low-density lipoprotein uptake, high transendothelial electrical resistance (TEER), and barrier-like efflux transporter activities. Over time, the de novo generation of an organotypic endothelial cell from hPSCs has aroused controversies. This perspective article highlights the developments made in the field of hPSC derived brain endothelial cells as well as where experimental data are lacking, and what concerns have emerged since their initial description.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Katrin Nather ◽  
Mónica Flores-Muñoz ◽  
Rhian M Touyz ◽  
Christopher M Loughrey ◽  
Stuart A Nicklin

Cardiac fibrosis accompanies numerous cardiovascular diseases (CVD) such as hypertension and myocardial infarction and increases myocardial stiffness leading to contractile dysfunction. Recently, endothelial-to-mesenchymal transition (EndMT) has been shown to contribute to myocardial fibrosis. EndMT describes a process by which endothelial cells transform into mesenchymal cells such as fibroblasts and has been implicated in many fibrotic diseases. Angiotensin II (AngII) plays a key role in myocardial fibrosis and has been associated with the activation of fibroblasts to myofibroblasts and an increase in myocardial collagen deposition. Here, we assessed the role of AngII in capillary loss and EndMT in vivo and in vitro . C57BL/6J mice were infused with H 2 O (control) or 24μg/kg/hr AngII for 4 weeks. Mice infused with AngII developed significant cardiac fibrosis characterised by the deposition of collagen I (2.5-fold vs. control; p<0.05) and III (1.9-fold vs. control; p<0.05). Capillary density was assessed by CD31 immunohistochemistry and revealed significant vascular rarefaction (control 2161±111 vs . AngII 838±132 capillaries/mm 2 ; p<0.05). To investigate whether AngII can induce EndMT in vitro , human coronary artery endothelial cells were stimulated with 10ng/mL TGFβ 1 alone or in combination with 1μM AngII for 10 days. AngII significantly enhanced TGFβ 1 -induced gene expression of α-smooth muscle actin (TGFβ 1 1.8-fold; TGFβ 1 ±AngII 4.3-fold vs . control; p<0.05) and collagen I (TGFβ 1 9.2-fold; TGFβ 1 +AngII 30.2-fold vs . control; p<0.05). Concomitantly, AngII significantly increased α-smooth muscle actin protein expression (TGFβ 1 3.9-fold; TGFβ 1 +AngII 23.6-fold vs . control; p<0.05) and significantly decreased CD31 expression (TGFβ 1 0.9-fold; TGFβ 1 +AngII 0.7-fold vs . control; p<0.05), suggesting AngII acts in concert with TGFβ 1 to enhance conversion of endothelial cells to myofibroblasts. Further studies investigating the underlying mechanism, including the role of the Smad pathway, are ongoing. These results demonstrate that AngII induces vascular rarefaction in vivo and potentiates TGFβ 1 -induced EndMT in vitro. Understanding the molecular basis for these observations may help to identify new therapeutic options in CVD.


1996 ◽  
Vol 36 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Nobuhiro Ichikawa ◽  
Kohji Naora ◽  
Hidenari Hirano ◽  
Michio Hashimoto ◽  
Sumio Masumura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document