Mapping of capillary flow, cellular redox state, and resting membrane potential in hypoperfused rat myocardium

1999 ◽  
Vol 277 (5) ◽  
pp. H2050-H2064 ◽  
Author(s):  
Frank Brasch ◽  
Marion Neckel ◽  
Rolf Volkmann ◽  
Gerhard Schmidt ◽  
Gerhard Hellige ◽  
...  

The influence on myocyte viability of ischemia-induced changes in capillary perfusion was studied in the hearts of anesthetized rats subjected to partial occlusion of the left coronary artery for 45 min. Timed plasma labeling was applied to determine perfusion patterns. Changes in the fluorescence of preloaded potential-sensitive dyes [tetramethylrhodamine methyl ester (TMRM) and bis-oxonol], of trypan blue, and of endogeneous NADH were utilized in characterizing myocyte viability in histological sections of the heart. Within the hypoperfused zone, localized areas appeared vascularly nonlabeled for periods of at least 10 min. Within these areas a reduction in TMRM fluorescence occurred in 82.5% of the tissue, signaling a reduced resting membrane potential. In the same areas 37.7% of the myocytes revealed an NADH fluorescence lower than that regularly found in anoxic tissues. This correlated with an especially low level of TMRM, with increased fluorescence bis-oxonol and with an accumulation of trypan blue. In conclusion, in localized hypoperfusion-induced zones lacking capillary flow, an inhomogeneous pattern of reductions in myocyte viability develops, which appears to be relevant in ischemia-induced arrhythmias.

1974 ◽  
Vol 52 (3) ◽  
pp. 404-423 ◽  
Author(s):  
Esther R. Anderson ◽  
J. G. Foulks

Substitution of acetate for external Cl produced a large persistent increase in the resting membrane potential (R.M.P.) of frog ventricle and a somewhat steeper relation between membrane potential (M.P.) and [K]o (external K concentration). An increased K conductance or reduced permeability to other ions could account for most of these results, but not for hyperpolarizations as great as −110 mV. Potentials of this size suggested a contribution from an active electrogenic transport system, but they were unaffected by several treatments including exposure to ouabain (10−7 M − 5 × 10−6 M), dinitrophenol (10−6 M, 10−5 M) or 30 mM tetraethylammonium.Acetate caused a prolongation of the action potential (A.P.) and a change in its configuration. Acetate also enhanced twitch tension and increased the rate of tension development. Similar changes are produced by removal of [K]o. The effects of both acetate and K removal on A.P. configuration were prevented by a reduced rate of stimulation.When acetate-induced hyperpolarization was reversed by raising [K]o to 10–15 mM, the configuration of the A.P. resembled that of controls and twitch tension did not increase. Thus, acetate-induced changes in the shape of the A.P. and in twitch tension appeared to be secondary to the increase in R.M.P. However, the relationship does not seem to be direct because these changes were temporary, whereas hyperpolarization was persistent.The character of the acetate-induced changes in A.P. configuration, and the dependence on stimulation rate and [Ca]o (external Ca concentration), suggested a raised [Ca]i (internal Ca concentration) and a possible increase in Ca influx. However, addition of Mn to the acetate solution did not prevent initial acetate-induced changes in the shape of the A.P. plateau and in twitch tension. Also in the absence of [Ca]o, disappearance of twitch tension was slowed by acetate. But acetate decreased the contracture tension produced in response to either increased [K]o or Na removal. Acetate may cause a redistribution of Ca within the cell.


1997 ◽  
Vol 273 (2) ◽  
pp. C541-C547 ◽  
Author(s):  
J. I. Vandenberg ◽  
G. C. Bett ◽  
T. Powell

The purpose of this investigation was to determine to what extent the swelling-activated Cl- current (ICl,swell) contributes to swelling-induced changes in the resting membrane potential and action potential duration (APD) in ventricular myocytes. Action potentials were recorded from guinea pig ventricular myocytes using conventional whole cell recording techniques. Cell swelling caused initial lengthening followed by a variable shortening of APD. In 59% of cells this secondary APD shortening had a 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive component, consistent with a contribution from ICl,swell. Furthermore, DIDS partially antagonized the depolarization of the resting membrane potential that occurred during cell swelling. We have modeled the ICl,swell using the Oxsoft Heart computer program. Action potential changes predicted by the model agree well with the observed DIDS-sensitive component of the change in the action potential during cell swelling. We conclude that activation of ICl,swell contributes to shortening of APD and depolarization of the resting membrane potential during cell swelling in cardiac myocytes.


1986 ◽  
Vol 61 (1) ◽  
pp. 180-184 ◽  
Author(s):  
S. A. Esau ◽  
N. Sperelakis

With muscle fatigue the chloride (Cl-) conductance of the sarcolemmal membrane decreases. The role of lowered Cl- conductance in the prolongation of relaxation seen with fatigue was studied in isolated hamster diaphragm strips. The muscles were studied in either a Krebs solution or a low Cl- solution in which half of the NaCl was replaced by Na-gluconate. Short tetanic contractions were produced by a 160-ms train of 0.2-ms pulses at 60 Hz from which tension (T) and the time constant of relaxation were measured. Resting membrane potential (Em) was measured using KCl-filled microelectrodes with resistances of 15–20 M omega. Mild fatigue (20% fall in tension) was induced by 24–25 tetanic contractions at the rate of 2/s. There was no difference in Em or T in the two solutions, either initially or with fatigue. The time constant of relaxation was greater in low Cl- solution, both initially (22 +/- 3 vs. 18 +/- 5 ms, mean +/- SD, P less than 0.05) and with fatigue (51 +/- 18 vs. 26 +/- 7 ms, P less than 0.005). Lowering of sarcolemmal membrane Cl- conductance appears to play a role in the slowing of relaxation of hamster diaphragm muscle seen with fatigue.


1987 ◽  
Vol 65 (9) ◽  
pp. 1821-1831 ◽  
Author(s):  
E. Honoré ◽  
M. M. Adamantidis ◽  
B. A. Dupuis ◽  
C. E. Challice ◽  
P. Guilbault

Biphasic contractions have been obtained in guinea-pig papillary muscle by inducing partial depolarization in K+-rich solution (17 mM) containing 0.3 μM isoproterenol; whereas in guinea-pig atria, the same conditions led to monophasic contractions corresponding to the first component of contraction in papillary muscle. The relationships between the amplitude of the two components of the biphasic contraction and the resting membrane potential were sigmoidal curves. The first component of contraction was inactivated for membrane potentials less positive than those for the second component. In Na+-low solution (25 mM), biphasic contraction became monophasic subsequent to the loss of the second component, but tetraethylammonium unmasked the second component of contraction. The relationship between the amplitude of the first component of contraction and the logarithm of extracellular Ca2+ concentration was complex, whereas for the second component it was linear. When Ca2+ ions were replaced by Sr2+ ions, only the second component of contraction was observed. It is suggested that the first component of contraction may be triggered by a Ca2+ release from sarcoplasmic reticulum, induced by the fast inward Ca2+ current and (or) by the depolarization. The second component of contraction may be due to a direct activation of contractile proteins by Ca2+ entering the cell along with the slow inward Ca2+ current and diffusing through the sarcoplasm. These results do not exclude the existence of a third "tonic" component, which could possibly be mixed with the second component of contraction.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Edgar D. Yoboue ◽  
Anne Devin

Mitochondrial biogenesis is a complex process. It necessitates the contribution of both the nuclear and the mitochondrial genomes and therefore crosstalk between the nucleus and mitochondria. It is now well established that cellular mitochondrial content can vary according to a number of stimuli and physiological states in eukaryotes. The knowledge of the actors and signals regulating the mitochondrial biogenesis is thus of high importance. The cellular redox state has been considered for a long time as a key element in the regulation of various processes. In this paper, we report the involvement of the oxidative stress in the regulation of some actors of mitochondrial biogenesis.


Sign in / Sign up

Export Citation Format

Share Document