Influence of Cycle Length Upon Refractory Period of Auricles, Ventricles, and A-V Node in the Dog

1956 ◽  
Vol 184 (2) ◽  
pp. 287-295 ◽  
Author(s):  
Carlos Mendez ◽  
Carl C. Gruhzit ◽  
Gordon K. Moe

The functional refractory periods (FRP) of auricular and ventricular muscle, and of the A-V transmission system were estimated in the denervated dog heart. In all three tissues the FRP was found to be a curvilinear function of the immediately preceding cycle length, with values for all but very early premature beats falling close to the curve describing the basic cycles; that is, there was no evidence for a cumulative effect of frequency. In the auricle, the FRP of even the earliest possible premature beats appeared to fit the curve relating cycle length to refractory period. In both the A-V node and ventricles very early responses deviated from an otherwise smooth relationship. It is postulated that the deviations may represent dissociation of the properties of two different elements in each of these tissues.

1985 ◽  
Vol 248 (5) ◽  
pp. H606-H613
Author(s):  
F. E. Marchlinski ◽  
M. E. Cain ◽  
R. A. Falcone ◽  
R. F. Corky ◽  
J. F. Spear ◽  
...  

The effects of prematurity, cycle length, site of stimulation, and procainamide on ventricular refractoriness following an extrastimulus (S2) were assessed in 10 dogs with and 10 dogs without infarction. Extrastimuli were introduced at preselected coupling intervals (S1-S2) from normal right and left ventricular sites and from left ventricular sites of infarction during drive cycle lengths (S1-S1) of 350 and 250 ms. At each S1-S2 interval, the effective refractory period of S2 was determined by introducing a second extrastimulus (S3). At all stimulation sites, cycle lengths, and before and during infusion of procainamide (mean concn 18.6 +/- 3.5 micrograms/ml), shortening (greater than 10 ms change) in refractoriness was most marked over a narrow range of closely coupled S1-S2 intervals. Regardless of stimulation site, the effective refractory period of S2 was less during a cycle length of 250 ms compared with a cycle length of 350 ms. In dogs without infarction, the effective refractory periods of S2 from left ventricular sites tended to be longer than from right ventricular sites, particularly during procainamide administration. The refractory period of S2 at sites of infarction did not differ consistently from those at normal sites. Finally, at all stimulation sites and cycle lengths, procainamide prolonged refractoriness of S2 at each S1-S2 interval and blunted the total shortening in refractoriness in response to S2.


1996 ◽  
Vol 271 (1) ◽  
pp. H148-H158 ◽  
Author(s):  
J. Wang ◽  
L. Liu ◽  
J. Feng ◽  
S. Nattel

The present study was designed to determine the factors governing the ability of premature beats at various atrial sites to initiate atrial fibrillation (AF) and the determinants of the duration of AF in dogs at 1-10 Hz. The site of atrial extrasystoles determined their ability to induce AF. Regional differences in AF inducibility were due to differences in local refractoriness. Premature beats initiated AF by blocking in regions of greater refractoriness, causing macroreentrant activation with subsequent disorganization producing fibrillation. The atrial refractory period and wavelength during rapid 1:1 atrial pacing were weak predictors of AF duration (r = 0.24 and 0.23, respectively), which depended strongly on variability in regional refractoriness measured by the standard deviation in local refractory periods (r = 0.80, P < 0.001) and on the heterogeneity of activation during AF (r = 0.74, P < 0.001). Thus, premature beats cause AF by initiating a single macroreentrant cycle that degenerates into multiple wavefronts, regional refractoriness is the primary determinant of AF induction by premature beats, and variability in refractoriness may be an important determinant of the ability of AF to sustain itself.


2017 ◽  
Vol 3 (2) ◽  
pp. 317-320 ◽  
Author(s):  
Laura Unger ◽  
Tobias Oesterlein ◽  
Gunnar Seemann ◽  
Olaf Dössel ◽  
Peter Spector ◽  
...  

AbstractAcquiring adequate mapping data in patients with atrial fibrillation is still one of the main obstacles in the treatment of this atrial arrhythmia. Due to the lack of catheters with both a panoramic field of view and sufficient electrode density for simultaneous mapping, electrophysiologists are forced to fall back on sequential mapping techniques. But, because activation patterns change rapidly during atrial fibrillation, they cannot be mapped sequentially. We propose that mapping tissue properties which are time independent, in contrast, allows a sequential approach. Here, we use the shortest measured electrogram cycle length to estimate the effective refractory period of the underlying tissue in a simulation study. Atrial fibrillation was simulated in a spherical model of the left atrium comprised of regions with varied refractory period. We found that the minimal measured electrogram cycle length correlates with the effective refractory period of the underlying tissue if the regions with distinct refractory properties are large enough and if the absolute difference in effective refractory periods is sufficient. This approach is capable of identifying regions of lowered effective refractory period without the need for cardioversion. Those regions are likely to harbor drivers of atrial fibrillation, which emphasizes the necessity of their localization.


1991 ◽  
Vol 260 (5) ◽  
pp. H1507-H1514 ◽  
Author(s):  
G. J. Rozanski

Effects of vagal nerve activity on atrial ectopic pacemaker foci were studied in vitro in strips of rabbit tricuspid valve. Transmembrane potentials were recorded from pacemaker and working atrial fibers superfused with Tyrode solution containing propranolol. Tissues were paced from the atrial muscle end at cycle lengths of 90, 70, or 50% of the intrinsic pacemaker cycle, and postganglionic vagal nerve endings were stimulated with brief trains of pulses (200 Hz; 100-200 microseconds) through a second electrode near the pacemaker. Vagal trains scanning diastole hyperpolarized pacemaker and surrounding fibers to a maximum membrane potential of -74.7 +/- 1.8 mV (normal maximum diastolic potential = -75.5 +/- 1.6 mV) and elicited a period of inexcitability lasting 217.9 +/- 27.3 ms (drive cycle = 90% of pacemaker cycle). Inexcitability was evident at critical diastolic intervals where vagal input prevented atrial impulses from activating the pacemaker allowing spontaneous discharges to occur, i.e., escape, late in diastole. Besides inexcitability, incidence and timing of escape impulses were determined by cumulative effects of drive cycle length, vagal stimulus, and subthreshold electrotonic input on intrinsic pacemaker cycle. These data suggest that phasic vagal stimuli may transiently protect atrial ectopic pacemaker foci from conducted sinus impulses by rendering pacemaker and surrounding fibers inexcitable. In the setting of a long sinus (drive) cycle length, phasic vagal activity may result in spontaneous discharges manifest as late atrial premature beats.


1988 ◽  
Vol 255 (6) ◽  
pp. H1342-H1348
Author(s):  
C. Giorgi ◽  
M. Vermeulen ◽  
R. Cardinal ◽  
P. Savard ◽  
R. Nadeau ◽  
...  

The properties and determinants of hysteresis during ventricular effective refractory period (VERP) measurements by an extrastimulus technique were determined in 15 anesthetized open-chest dogs as well as in isolated ventricular muscle (n = 6). VERP was determined both by decreasing the S1-S2 interval and also by increasing S1S2. Hysteresis was then calculated by subtracting the VERP obtained with the decreasing S1S2 from the VERP obtained with the increasing S1S2. The effects of basic cycle length, pulse width, stimulation intensity, and the number of basic drives on VERP and hysteresis were evaluated. VERP was shorter for long pulse width, high stimulation intensities, and shorter basic cycle lengths. These modifications were not associated with significant changes of hysteresis. VERP was shorter during decreasing S1S2 than during increasing S1S2. Hysteresis was greater with 6 basic drive cycles than with 12 (P less than 0.001) in both in vivo and in vitro preparations. The data suggest that 1) hysteresis occurs during VERP measurements; 2) hysteresis is independent of stimulation modality; and 3) hysteresis decreases with the number of basic drive cycles.


1981 ◽  
Vol 8 (1) ◽  
pp. 45 ◽  
Author(s):  
G.P Findlay ◽  
N Findlay

The column of the trigger plant, Stylidium graminifolium, when fully set responds to mechanical stimuli by flipping through an angle of about 4 radians in a fast firing movement lasting about 15-30 ms, and then slowly resetting to its original position in about 400 s. After resetting there is an absolute refractory period of about 500 s during which no further response to stimuli can be initiated, followed by a relative refractory period when graded responses increasing in rate and magnitude with time can be obtained. The resetting movement and the process, occurring during the refractory period, allowing subsequent firing to occur, are inhibited when the air surrounding the column is replaced by nitrogen. The firing movement, however, is not affected by these anaerobic conditions. Thus the firing movement is caused by passive physical forces, rapidly utilizing potential energy from a store built up during the previous resetting and refractory periods. Removal of the labellum, which the column touches when set, causes the column to oscillate with amplitude of about 3-3.5 radians and period of 1-2 ks. When the column is held at a constant angular displacement it develops an oscillatory torque with similar period. These oscillations are inhibited at all stages of the cycle by anaerobic conditions. It appears that the oscillatory behaviour is not a slowed-down firing process followed by normal resetting, but is linked throughout the cycle to the metabolic energy supply.


1960 ◽  
Vol 198 (6) ◽  
pp. 1143-1147 ◽  
Author(s):  
Chandler McC. Brooks ◽  
Jerome L. Gilbert ◽  
Martin E. Greenspan ◽  
Gertrude Lange ◽  
Hector M. Mazzella

Measurements were made of the changes in the monophasic action potential, excitability, durations of the refractory periods and conduction times in an area of left ventricular muscle during the development of ischemia subsequent to ligation of the ramus descendens anterior. The degree and duration of the ischemia produced varied greatly and effects were related thereto. It was found that action potentials shortened as did the refractory periods; thresholds fell momentarily and then rose progressively as tissue responsiveness failed due to continuing ischemia. Latency of responses increased, the action potentials decreased in amplitude and alternation occurred before the tissue became completely unresponsive. Early re-establishment of a blood supply caused a reversal of the abnormalities. The significance of these changes to the origin of arrhythmias is discussed.


1967 ◽  
Vol 19 (3) ◽  
pp. 272-279 ◽  
Author(s):  
Paul Bertelson

The time course of the adjustments triggered by a warning signal was studied by measuring choice reaction times (RTs) at different predictable foreperiods after such a signal. Before the warning signal, a high time uncertainty situation was created by imposing either a long constant foreperiod of 5 sec. or one varying in the range 1.5 to 5 sec. The warning signal was a click. Foreperiods ranging from 0 to 300 millisec. were used in different blocks of trials. The stimulus was the onset of one of two lamps calling for the pressing of one of two keys. A control condition, without click, was used also. RTs were found to decrease continuously when the forperiod was increased from 0 to 100-150 millisec. The click delivered simultaneously with the stimulus permitted reactions significantly faster than in the control condition. It is concluded (a) that the latency of preparation can be much shorter than the 2 to 4 sec. reported by Woodrow; (b) that the warning signal can be used as a time cue to start preparatory adjustments without starting a refractory period of the order of magnitude found in experiments with pairs of successive reactions, and thus that such refractory periods are not the inevitable cost of paying attention to a signal. There is also some suggestion that in this situation the click not only triggers preparatory adjustments, but also causes an immediate facilitation of the reaction to the visual stimulus.


1981 ◽  
Vol 89 (1) ◽  
pp. 147-155 ◽  
Author(s):  
K. M. KENDRICK ◽  
R. F. DREWETT ◽  
C. A. WILSON

Measurements of the refractory period of stria terminalis neurones that are sensitive to testosterone propionate, of sexual behaviour and of plasma levels of LH were taken in castrated rats at various times after initiation of treatment with testosterone propionate. Levels of LH dropped within 24 h, before there was any change in neuronal refractory periods. The period of latency to mounting, however, was reduced to its shortest only after 7–8 days and ejaculations first occurred at the same time; these sexual responses correlated in time with the reduction of the neuronal refractory period to its lowest level.


Sign in / Sign up

Export Citation Format

Share Document