Effects of Altered Acid-Base Balance on Adrenocortical Function in Anesthetized Dogs

1956 ◽  
Vol 188 (1) ◽  
pp. 7-11 ◽  
Author(s):  
John B. Richards

Effect of altered acid-base balance, induced by the intravenous infusion of either hydrochloric acid or sodium bicarbonate, on adrenocortical function in anesthetized dogs was studied. The secretory activity of the adrenal cortex was determined by measuring 17-hydroxycorticosteroids in adrenal venous blood. Adrenocortical stimulation occurred in dogs with a profound decrease in arterial ph and bicarbonate concentration in the presence of a normal arterial CO2 tension (acid infusions) and in dogs with increased arterial CO2 tension and bicarbonate concentration in the presence of a normal arterial ph (bicarbonate infusions). It is concluded that concomitant alterations in both arterial ph and CO2 tension are not required to initiate an adrenocortical response, and it is suggested that a suitable change in either of these factors may act as a pituitary-adrenocortical stimulus.

1977 ◽  
Vol 232 (1) ◽  
pp. R10-R17 ◽  
Author(s):  
R. G. DeLaney ◽  
S. Lahiri ◽  
R. Hamilton ◽  
P. Fishman

Upon entering into aestivation, Protopterus aethiopicus develops a respiratory acidosis. A slow compensatory increase in plasma bicarbonate suffices only to partially restore arterial pH toward normal. The cessation of water intake from the start of aestivation results in hemoconcentration and marked oliguria. The concentrations of most plasma constituents continue to increase progressively, and the electrolyte ratios change. The increase in urea concentration is disproportionately high for the degree of dehydration and constitutes an increasing fraction of total plasma osmolality. Acid-base and electrolyte balance do not reach a new equilibrium within 1 yr in the cocoon.


1981 ◽  
Vol 51 (2) ◽  
pp. 452-460 ◽  
Author(s):  
P. E. Bickler

The effects of constant and changing temperatures on blood acid-base status and pulmonary ventilation were studied in the eurythermal lizard Dipsosaurus dorsalis. Constant temperatures between 18 and 42 degrees C maintained for 24 h or more produced arterial pH changes of -0.0145 U X degrees C-1. Arterial CO2 tension (PCO2) increased from 9.9 to 32 Torr plasma [HCO-3] and total CO2 contents remained constant at near 19 and 22 mM, respectively. Under constant temperature conditions, ventilation-gas exchange ratios (VE/MCO2 and VE/MO2) were inversely related to temperature and can adequately explain the changes in arterial PCO2 and pH. During warming and cooling between 25 and 42 degrees C arterial pH, PCO2 [HCO-3], and respiratory exchange ratios (MCO2/MO2) were similar to steady-state values. Warming and cooling each took about 2 h. During the temperature changes, rapid changes in lung ventilation following steady-state patterns were seen. Blood relative alkalinity changed slightly with steady-state or changing body temperatures, whereas calculated charge on protein histidine imidazole was closely conserved. Cooling to 17-18 degrees C resulted in a transient respiratory acidosis correlated with a decline in the ratio VE/MCO2. After 12-24 h at 17-18 degrees C, pH, PCO2, and VE returned to steady-state values. The importance of thermal history of patterns of acid-base regulation in reptiles is discussed.


Author(s):  
J. M. Chapel ◽  
J. L. Benedito ◽  
J. Hernández ◽  
P. Famigli-Bergamini ◽  
C. Castillo

Abstract Pet rabbits have increased their popularity in a lot of countries. However, most of the laboratory profiles in rabbit medicine come from the observations made in rabbit as biomodels or meat production. So that further researches are necessary to obtain reference values for hematology and biochemical profiles in pet rabbits and the different breeds, especially, in relation to acid-base balance. The aim of this report was to offer the mean values of the main parameters connected with acid-base profile in Netherland Dwarf breed. Thirty-five healthy rabbits (15 males and 20 females) were studied. Venous blood sample from lateral saphenous vein was analyzed to measure: haematocrit, haemoglobin, blood urea nitrogen, glucose, blood pH, partial pressure of CO2 (pCO2), total CO2, ions bicarbonate, chloride, sodium, potassium, base excess and anion Gap. Results showed a shorter range that those reported by different researchers. Moreover, differences between genders were showed in pCO2, its values were higher in males. It may be associated with a greater cellular metabolism. Values obtained in this research should be taken into account by veterinary clinicians for this breed in their clinical assessments. Besides, these values provide new results in parameters with few reference values.


1996 ◽  
Vol 16 (1_suppl) ◽  
pp. 126-129 ◽  
Author(s):  
Mariano Feriani ◽  
Claudio Ronco ◽  
Giuseppe La Greca

Our objective is to investigate transperitoneal buffer fluxes with solution containing lactate and bicarbonate, and to compare the final effect on body base balance of the two solutions. One hundred and four exchanges, using different dwell times, were performed in 52 stable continuous ambulatory peritoneal dialysis (CAPD) patients. Dialysate effluent lactate and bicarbonate and volumes were measured. Net dialytic base gain was calculated. Patients’ acid-base status and plasma lactate were determined. In lactate-buffered CAPD solution, lactate concentration in dialysate effluent inversely correlated with length of dwell time, but did not correlate with plasma lactate concentration and net ultrafiltration. Bicarbonate concentration in dialysate effluent correlated with plasma bicarbonate and dwell time but not with ultrafiltration. The arithmetic sum of the lactate gain and bicarbonate loss yielded the net dialytic base gain. Ultrafiltration was the most important factor affecting net dialytic base gain. A previous study demonstrated that in patients using a bicarbonate-buffered solution the net bicarbonate gain is a function of dwell time, ultrafiltration, and plasma bicarbonate. By combining the predicted data of the dialytic base gain with the calculated metabolic acid production, an approximate body base balance could be obtained with both lactate and bicarbonate-buffered CAPD solutions. The body base balance in CAPD patients is self-regulated by the feedback between plasma bicarbonate concentration and dialytic base gain. The level of plasma bicarbonate is determined by the dialytic base gain and the metabolic acid production. This can explain the large interpatient variability in acid-base correction. Bicarbonate-buffered CAPD solution is equal to lactate solution in correcting acid-base disorders of CAPD patients.


1964 ◽  
Vol 206 (4) ◽  
pp. 875-882 ◽  
Author(s):  
David P. Simpson

Citrate excretion has been studied in dogs under various conditions of acid-base balance in order to determine which factors are responsible for the increased citrate clearance present in metabolic alkalosis. A close relationship, significantly modified by systemic pH, was found between plasma bicarbonate concentration and citrate clearance. In the presence of an alkaline plasma pH, there was a linear relationship between changes in plasma bicarbonate concentration and changes in citrate clearance. Other experiments also demonstrated the influence of plasma bicarbonate concentration on citrate clearance at alkaline pH. Under acidotic conditions citrate clearances were low and changes in plasma bicarbonate concentration had little effect on citrate excretion. A change in plasma pH from an acidotic to an alkalotic state, with a constant plasma bicarbonate concentration, produced an increase in citrate clearance. Thus the coexistence in metabolic alkalosis of high plasma bicarbonate concentration and high plasma pH results in a markedly increased citrate clearance.


1957 ◽  
Vol 3 (5) ◽  
pp. 631-637
Author(s):  
Herbert P Jacobi ◽  
Anthony J Barak ◽  
Meyer Beber

Abstract The Co2 combining power bears a variable relationship to the in vivo plasma bicarbonate concentration, depending upon the type and severity of acid-base distortion. In respiratory alkalosis and metabolic acidosis the Co2 combining power will usually be greater than the in vivo plasma bicarbonate concentration; whereas, in respiratory acidosis and metabolic alkalosis the Co2 combining power will usually be less. Co2 content, on the other hand, will always parallel the in vivo plasma bicarbonate concentration quite closely, being only slightly greater. These facts, together with other considerations which are discussed, recommend the abandonment of the determination of CO2 combining power.


2002 ◽  
Vol 25 (2) ◽  
pp. 100-106 ◽  
Author(s):  
L.A. Pedrini ◽  
V. De Cristofaro ◽  
B. Pagliari

Background Electrolyte and acid-base balance may be differently affected by the infusion mode in on-line hemodiafiltration (HDF). We studied the effects of the different infusion modes on bicarbonate transport across the dialyzer membrane, and thus on the final bicarbonate balance of the HDF sessions. Methods Instantaneous HCO3− transfer across the dialyzer membrane, blood bicarbonate profile and the total balance of the sessions were studied in six dialysis patients under the same operating conditions over 36 HDF sessions, in order to compare the effects of predilution HDF (pre-HDF), postdilution HDF (post-HDF), and mixed HDF on the final bicarbonate balance. Results The final HCO3− balance was more positive in post-HDF vs pre-HDF (142 ± 36 vs 99 ± 41 mmol/session, p<0.05), with a final blood HCO3− concentration of 26.6 ± 1.0 vs 25.4 ± 1.1 mmol/L, (p<0.05). Mixed HDF yielded intermediate results (balance: 119 ± 42 mmol/session, final HCO3− 26.2 (1.2 mmol/L). These differences were seen to result from the increased HCO3- concentration of blood entering the filter in predilution, due to the infused HCO3−, enhancing convective loss and reducing the driving force for diffusive HCO3− gain. Conclusions Bicarbonate concentration in dialysate-reinfusate is critical in order to obtain an adequate end of session HCO3− balance in on-line HDF. The predilution method produced the lowest cumulative net HCO3− gain between the three studied infusion modes. Our data suggest that, under the same operating conditions and excluding the effect of ultrafiltration, dialysate HCO3− should be increased by about 2 mmol/L in pre-HDF, and 1 mmol/L in mixed HDF, to yield the same final balance as in post-HDF.


2016 ◽  
Vol 46 (8) ◽  
pp. 1479-1485 ◽  
Author(s):  
Priscilla Fajardo Valente Pereira ◽  
José Antonio Bessegatto ◽  
Gabriela de Castro Bregadioli ◽  
Stéfany Lia Oliveira Camilo ◽  
Nathali Adrielli Agassi de Sales ◽  
...  

ABSTRACT: The effects of a new intravenous electrolyte solution for veterinary therapy on electrolyte and acid-base balances of horses were evaluated, assessing the potential of the use of this solution as a rational alternative in fluid therapy. Eight healthy adult horses, including 4 males and 4 females, received two treatments in a cross-over design: isotonic saline solution (IS) and a test solution (TS) containing 145mEq of Na+, 5mEq of K+, 4mEq of Ca++, 2mEq of Mg++, 96mEq of Cl-, 60mEq of lactate, 50g of dextrose, and 4mg of cyanocobalamin per liter. Solutions were IV infused in a volume corresponding to 5% of BW, over 3 hours. Venous blood samples were taken 5 times before and after the infusion (at 0, 3, 6, 9 e 24h), for pHv, pCO2v, HCO3 -v, BEv, Na+, K+, Cl-, Ca++, Ca, P, Mg, glucose and L-lactate measurements, and AG and SID calculations. The data were analyzed through repeated measures ANOVA. The IS caused mild acidifying effect by increasing Cl- and decreasing plasma SID. In contrast, the TS induced mild and transient hypochloremia without changes in acid-base balance. Hyperglycemia was present at the end of the TS infusion and reversed 6 hours later. The horses did not exhibit any clinical changes. We concluded that TS is an option for fluid therapy in horses.


Sign in / Sign up

Export Citation Format

Share Document