Circulating and tissue hematocrits of normal unanesthetized mice

1959 ◽  
Vol 196 (2) ◽  
pp. 420-422 ◽  
Author(s):  
Julius J. Friedman

The circulating and tissue hematocrits of normal unanesthetized mice were determined by means of independent red cell and plasma volume measurements. The red cell volume-indicator which was used in this study was radioiron (Fe59) tagged red cells. The plasma volume data were derived by means of radioiodine (I131) labeled serum albumin and were reported earlier (Friedman, Proc. Soc. Exper. Biol. & Med. 88: 323, 1955). The hematocrits of the various tissues were found to be: for spleen 51.3, lung 47.9, muscle 49.9, liver 38.9, intestine, 32.2, skin 29.2 and kidney 24.0%. The total body hematocrit was 35.4% as compared to 48.4 for venous blood. All tissues, with the exception of spleen and lung, contained hematocrits which were lower than that of venous blood suggesting the presence of some mechanism within the various tissues which is capable of effectively separating plasma from red cells.

1985 ◽  
Vol 248 (3) ◽  
pp. R293-R301 ◽  
Author(s):  
J. P. Hannon ◽  
C. A. Bossone ◽  
W. G. Rodkey

When estimated by the dilution of 51Cr-labeled red blood cells under nearly basal conditions, immature splenectomized pigs (n = 20) had a circulating red cell volume of 17.8 +/- 1.64 (SD) ml/kg. At an assumed body-to-large vessel hematocrit (BH:LH) ratio of 0.9, plasma volume was 49.6 +/- 3.12 ml/kg and blood volume 67.3 +/- 3.67 ml/kg. Sham-operated pigs (n = 20) had a circulating red cell volume of 16.2 +/- 1.39 ml/kg, a plasma volume of 51.1 +/- 3.42 ml/kg, and blood volume of 67.2 +/- 4.12 ml/kg. Kinetic analysis of early 51Cr loss from the circulating blood of the sham-operated pigs indicated a splenic red cell sequestration of 4.5 +/- 0.89 ml/kg and a t1/2 of 9.76 +/- 1.93 min for splenic red cell turnover. Epinephrine injection (n = 6) and physical restraint (n = 8) caused rapid mobilization of splenic red blood cells in sham-operated pigs. Volume estimates in splenectomized pigs (n = 7) based on simultaneous dilutions of 51Cr-labeled red blood cells and 125I-labeled bovine albumin gave circulating red cell, plasma, and blood volumes of 18.4 +/- 2.46, 60.7 +/- 4.01, and 79.0 +/- 3.51 ml/kg, respectively, and a BH:LH ratio of 0.756 +/- 0.029. The latter value may have reflected an overestimation of plasma volume by the 125I-labeled albumin procedure.


1960 ◽  
Vol 198 (4) ◽  
pp. 886-890 ◽  
Author(s):  
J. J. Friedman

The application of occluding tourniquets to both hind legs of unanesthetized mice produced widespread changes in the distribution of plasma and red cells throughout the peripheral circulation. Following tourniquet application the plasma volume within all tissues declined except for lung which remained unaltered and muscle which exhibited an increase. The red cell volume changed variably, declining in liver and spleen, rising in kidney and muscle and remaining unchanged in the other tissues analyzed. These changes were suggestive of a somewhat generalized increase in peripherovascular constrictor activity which included venous resistance vessels in addition to arterioles.


1956 ◽  
Vol 185 (3) ◽  
pp. 446-449 ◽  
Author(s):  
Kee-Chang Huang ◽  
James H. Bondurant

A single dose of 600 r of x-ray was given to groups of nonanesthetized normal and splenectomized rats. Simultaneous estimations of plasma volume, red cell volume, and thiocyanate space were performed in these animals before and after x-irradiation. In normal rats plasma volume decreased in the first 8 days postirradiation but showed a significant increase by the 10th day. The reduction of red cell volume and hematocrit developed gradually and was markedly shown by the 10th day. The blood volume after irradiation was generally larger than that of the normal value. The SCN space increased on the 4th day after irradiation then decreased in the next period and was elevated again by the 10th day postirradiation. In splenectomized rats the change of SCN space was similar to that observed in normal rats and the changes of blood volume were varied. A marked reduction of red cell volume with an increase, probably compensatory, of plasma volume, developed in these rats by the 4th day after x-irradiation.


1985 ◽  
Vol 14 (6) ◽  
pp. 345-356
Author(s):  
Michael G. Garner ◽  
Andrew F. Phippard ◽  
John S. Horvath ◽  
Geoffrey G. Duggin ◽  
David J. Tiller

Transfusion ◽  
1999 ◽  
Vol 39 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Donald Mock ◽  
Gary L. Lankford ◽  
John A. Widness ◽  
Leon F. Burmeister ◽  
Daniel Kahn ◽  
...  

1979 ◽  
Vol 47 (5) ◽  
pp. 1031-1038 ◽  
Author(s):  
J. E. Greenleaf ◽  
V. A. Convertino ◽  
G. R. Mangseth

Our purpose was 1) to test the hypothesis that in man there is a range of plasma osmolality within which the red cell volume (RCV) and mean corpuscular volume (MCV) remain essentially constant and 2) to determine the upper limit of this range. During a variety of stresses--submaximal and maximal exercise, heat and altitude exposure, +Gz acceleration, and tilting--changes in plasma osmolality between -1 and +13 mosmol/kg resulted in essentially no change in the regression of percent change in plasma volume (PV) calculated from a change in hematocrit (Hct) on that calculated from a change in Hct + hemoglobin (Hb), i.e., the RCV and MCV were constant. Factors that do not influence RCV are the level of metabolism, heat exposure at rest, and short-term orthostasis (heat-to-foot acceleration). Factors that may influence RCV are exposure to high altitude and long-term orthostasis (head-up tilting). Factors that definitely influence RCV are prior dehydration and extended (greater than 2 h) periods of stress. Thus, either the Hct or the Hct + Hb equations can be used to calculate percent changes in PV under short-term (less than 2 h) periods of stress when the change in plasma osmolality is less than 13 mosmol/kg.


PEDIATRICS ◽  
1972 ◽  
Vol 49 (3) ◽  
pp. 406-419 ◽  
Author(s):  
Saroj Saigal ◽  
Allison O'Neill ◽  
Yeldandi Surainder ◽  
Le-Beng Chua ◽  
Robert Usher

Placental transfusion has been compared in premature and full-term infants. Blood volume measurements showed that the 5-minute transfusion was similar in full-term and premature infants (47% and 50% increase in blood volume from birth). A larger proportion of the 5-minute transfusion occurred by 1 minute in full-term (76%) than in premature infants (56%). Placental transfusion, by increasing red cell volume, greatly enhanced the severity of neonatal hyperbilirubinemia. Bilirubin concentrations of 15 mg/100 ml developed in only 6% of premature infants when cord clamping was immediate, in 14% when cord clamping was delayed 1 minute, and in 38% after a 5-minute delay in cord clamping.


1956 ◽  
Vol 186 (1) ◽  
pp. 92-96 ◽  
Author(s):  
R. A. Huggins ◽  
E. L. Smith ◽  
R. A. Seibert

On the basis of the amount of blood transfused in cubic centimeters per kilogram the dogs were arranged into five groups: group I, 0.0–49.0 cc/kg, group II, 50.0–99.0 cc/kg, group III, 100.0–149.0 cc/kg, group IV, 150.0– 199.0 cc/kg and group V, 200.0–249.0 cc/kg. The determinations made in each group were plasma volume, plasma proteins, hematocrit and hemoglobin. Plasma including protein escaped rapidly from the vascular system even with the smallest transfusion and in the last two groups the plasma lost exceeded that infused. Thus, any method of determining blood volume based on measurement of plasma volume must be in error. The loss of plasma protein became progressively greater as the amount of transfusion increased. The apparent increase in measured red cell volume over the expected in groups I, II and III was probably the result of loss of dye from the circulation, giving an overestimate of plasma and red cell volume. There was no evidence that cells leave the circulation until the transfusion volume became very large ( groups IV, V) and hemorrhage supervened.


Blood ◽  
1977 ◽  
Vol 49 (2) ◽  
pp. 301-307 ◽  
Author(s):  
R Alexanian

Abstract The plasma volume, red cell volume, or both were measured in 170 normal, anemic, or polycythemic subjects. For anemic subjects without a serum protein abnormality or splenomegaly, the relationship between hematocrit and red cell volume was linear and predictable. In patients with a serum monoclonal globulin on electrophoresis, the plasma voluem was significantly increased for the hematocrit in 30%, and the total blood volume was increased in 45%. The frequency of an elevated plasma volume was higher in patients with a markedly increased level of monoclonal protein. Reductions of abnormal proteins with chemotherapy were associated with declines in plasma volume. For a specific concentration, the serum viscosity was highest in patients with IgM proteins and lowest in patients with IgG globulins. Marked elevations in viscosity were noted only in sera with macroglobulinemia or with more than 5 g/dl of IgG or IgA globulins.


Sign in / Sign up

Export Citation Format

Share Document