Rapid postmortem ventilation improves donor lung viability by extending the tolerable warm ischemic time after cardiac death in mice

Author(s):  
Junyi Yu ◽  
Che Xu ◽  
Janet S. Lee ◽  
Jonathan K. Alder ◽  
Zongmei Wen ◽  
...  

Uncontrolled donation after cardiac death (uDCD) contributes little to ameliorating donor lung shortage due to rapidly progressive warm ischemia after circulatory arrest. Here, we demonstrated non-hypoxia improves donor lung viability in a novel uDCD lung transplant model undergoing rapid ventilation after cardiac death and compared the evolution of ischemia-reperfusion injury in mice that underwent pulmonary artery ligation (PAL). The tolerable warm ischemia time at 37ºC was initially determined in mice using a modified PAL model. The donor lung following PAL was also transplanted into syngeneic mice and compared to those that underwent rapid ventilation or no ventilation at 37ºC prior to transplantation. Twenty-four hours following reperfusion, lung histology, PaO2/FIO2 ratio, and inflammatory mediators were measured. Four hours of PAL had little impact on PaO2/FIO2 ratio and acute lung injury score in contrast to significant injury induced by 5 hours of PAL. Four-hour PAL lungs showed an early myeloid-dominant inflammatory signature when compared to naïve lungs and substantially injured five-hour PAL lungs. In the context of transplantation, unventilated donor lungs showed severe injury after reperfusion, whereas ventilated donor lungs showed minimal changes in PaO2/FIO2 ratio, histologic score, and expression of inflammatory markers. Taken together, the tolerable warm ischemia time of murine lungs at 37oC can be extended by maintaining alveolar ventilation for up to 4 hours. Non-hypoxic lung warm ischemia-reperfusion injury shows an early transcriptional signature of myeloid cell recruitment and extracellular matrix proteolysis prior to blood-gas barrier dysfunction and significant tissue damage.

2019 ◽  
Vol 60 (3-4) ◽  
pp. 106-116
Author(s):  
Davide Zampieri ◽  
Nadia Azzollini ◽  
Stefania Vuljan ◽  
Federica Pezzuto ◽  
Sonia Fiori ◽  
...  

Background: The rat orthotopic lung transplant model is not widely used yet because of the complexity of the procedure, in particular, venous anastomosis. Here, we performed a rat orthotopic lung transplantation using either the suture (ST) or cuff (CT) method for vein anastomosis. Objectives: To compare the vein ST and CT techniques in terms of operative time, success, recipient survival, and early histological outcomes was the objective of this study. Methods: A total of 24 left lung transplants in rats were performed. Twelve syngeneic (Lewis to Lewis) and 12 allogeneic (Brown-Norway to Lewis) lung transplants were performed using either the vein ST or the CT procedure. Arterial and bronchial anastomoses were performed with the CT technique. Graft histological damage was evaluated 3–7 days post-transplant in all rat lungs. Results: The surgical success rate was 75% in both the ST and CT groups. Failures related mainly to vein bleeding (n = 2 in the ST group) and thrombosis (n = 1 in the ST group; n = 2 in the CT group). Total ischemia time was longer in the ST group (122 ± 25 min in ST group vs. 83 ± 10 min in CT group, mean ± SD), due to prolonged warm ischemia time (60 ± 12 min in the ST group vs. 21 ± 5 min in the CT group, mean ± SD), reflecting the time required to complete the vein ST procedure. The prolonged warm ischemia time resulted in significantly higher vascular inflammation in syngeneic grafts (2.3 ± 1.2 ST group vs. 0 in the CT group, mean ± SD) and in increased severity of ischemia/reperfusion injury and acute graft rejection (3.6 ± 0.4 in the ST group vs. 2.6 ± 0.4 in the CT group, mean ± SD) in allogeneic lung transplants. Conclusions: The vein ST technique is a more time-consuming procedure than the CT method and the prolonged anastomosis time has a deleterious impact on transplant outcomes. These findings suggest that warm ischemia time – one of the modifiable transplant factors – should be considered a major risk factor in lung transplantation, particularly in the setting of donation after cardiac death.


2001 ◽  
Vol 33 (1-2) ◽  
pp. 862 ◽  
Author(s):  
Y Sunose ◽  
I Takeyoshi ◽  
S Ohwada ◽  
H Tsutsumi ◽  
S Iwazaki ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1216
Author(s):  
Jordi Guiteras ◽  
Laura De Ramon ◽  
Elena Crespo ◽  
Nuria Bolaños ◽  
Silvia Barcelo-Batllori ◽  
...  

Many studies have shown both the CD28—D80/86 costimulatory pathway and the PD-1—PD-L1/L2 coinhibitory pathway to be important signals in modulating or decreasing the inflammatory profile in ischemia-reperfusion injury (IRI) or in a solid organ transplant setting. The importance of these two opposing pathways and their potential synergistic effect led our group to design a human fusion recombinant protein with CTLA4 and PD-L2 domains named HYBRI. The objective of our study was to determine the HYBRI binding to the postulated ligands of CTLA4 (CD80) and PD-L2 (PD-1) using the Surface Plasmon Resonance technique and to evaluate the in vivo HYBRI effects on two representative kidney inflammatory models—rat renal IRI and allogeneic kidney transplant. The Surface Plasmon Resonance assay demonstrated the avidity and binding of HYBRI to its targets. HYBRI treatment in the models exerted a high functional and morphological improvement. HYBRI produced a significant amelioration of renal function on day one and two after bilateral warm ischemia and on days seven and nine after transplant, clearly prolonging the animal survival in a life-sustaining renal allograft model. In both models, a significant reduction in histological damage and CD3 and CD68 infiltrating cells was observed. HYBRI decreased the circulating inflammatory cytokines and enriched the FoxP3 peripheral circulating, apart from reducing renal inflammation. In conclusion, the dual and opposite costimulatory targeting with that novel protein offers a good microenvironment profile to protect the ischemic process in the kidney and to prevent the kidney rejection, increasing the animal’s chances of survival. HYBRI largely prevents the progression of inflammation in these rat models.


2021 ◽  
Vol 10 (13) ◽  
pp. 2968
Author(s):  
Alessandro Bellis ◽  
Giuseppe Di Gioia ◽  
Ciro Mauro ◽  
Costantino Mancusi ◽  
Emanuele Barbato ◽  
...  

The significant reduction in ‘ischemic time’ through capillary diffusion of primary percutaneous intervention (pPCI) has rendered myocardial-ischemia reperfusion injury (MIRI) prevention a major issue in order to improve the prognosis of ST elevation myocardial infarction (STEMI) patients. In fact, while the ischemic damage increases with the severity and the duration of blood flow reduction, reperfusion injury reaches its maximum with a moderate amount of ischemic injury. MIRI leads to the development of post-STEMI left ventricular remodeling (post-STEMI LVR), thereby increasing the risk of arrhythmias and heart failure. Single pharmacological and mechanical interventions have shown some benefits, but have not satisfactorily reduced mortality. Therefore, a multitarget therapeutic strategy is needed, but no univocal indications have come from the clinical trials performed so far. On the basis of the results of the consistent clinical studies analyzed in this review, we try to design a randomized clinical trial aimed at evaluating the effects of a reasoned multitarget therapeutic strategy on the prevention of post-STEMI LVR. In fact, we believe that the correct timing of pharmacological and mechanical intervention application, according to their specific ability to interfere with survival pathways, may significantly reduce the incidence of post-STEMI LVR and thus improve patient prognosis.


2010 ◽  
Vol 42 (5) ◽  
pp. 1545-1549
Author(s):  
L. Feng ◽  
Y. Guo ◽  
F. Cheng ◽  
S. Li ◽  
L. Wei ◽  
...  

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Chandu Vemuri ◽  
Junjie Chen ◽  
Rohun U Palekar ◽  
John S Allen ◽  
Xiaoxia Yang ◽  
...  

Objective: Thrombin mediated microvascular thrombosis plays a crucial role in the pathogenesis of acute renal reperfusion injury following transient ischemia. We hypothesize that anti-thrombin nanoparticles will ameliorate acute renal injury by inhibiting microvascular thrombosis. Methods: Adult, male Sprague Dawley rats were randomized into two groups of 5 to receive tail vein injections of saline or nanoparticles loaded with Phe[D]-Pro-Arg-Chloromethylketone (NP-PPACK). Immediately following injection, all animals underwent operative bilateral renal artery occlusion to create 45 minutes of warm ischemia, followed by restoration of renal blood flow. Blood samples were drawn daily and animals were euthanized on day 1 or 7 for histologic analysis of kidney injury (H&E, TUNEL and thrombin staining). Results: Histologic analysis of renal tissue revealed significant apoptosis, necrosis and thrombin accumulation 1 day after ischemia-reperfusion, confirming acute kidney injury. The peak creatinine (mg/dl) on day 1 was significantly lower in NP-PPACK treated animals (0.57 +/- 0.07 (SEM)) than in saline treated controls (1.40 +/- 0.20 (SEM); p-value <0.01). Furthermore, animals treated with NP-PPACK continued to exhibit less renal dysfunction for 7 days after injury (Figure 1). Conclusion: Histologically confirmed intrarenal thrombosis was detected one day after ischemia-reperfusion injury. Targeted inhibition of thrombin with NP-PPACK prevented a decline in renal function following transient occlusion. Future work will focus on defining the underlying mechanisms of this effect.


Sign in / Sign up

Export Citation Format

Share Document