scholarly journals Effects of rottlerin on silica-exacerbated systemic autoimmune disease in New Zealand mixed mice

2005 ◽  
Vol 289 (6) ◽  
pp. L990-L998 ◽  
Author(s):  
Jared M. Brown ◽  
Corbin M. Schwanke ◽  
Mark A. Pershouse ◽  
Jean C. Pfau ◽  
Andrij Holian

Environmental crystalline silica exposure has been associated with formation of autoantibodies and development of systemic autoimmune disease, but the mechanisms leading to these events are unknown. Silica exposure in autoimmune-prone New Zealand mixed (NZM) mice results in a significant exacerbation of systemic autoimmunity as measured by increases in autoantibodies and glomerulonephritis. Previous studies have suggested that silica-induced apoptosis of alveolar macrophages (AM) contributes to the generation of the autoantibodies and disease. Rottlerin has been reported to inhibit apoptosis in many cell types, possibly through direct or indirect effects on PKCδ. In this study, rottlerin reduced silica-induced apoptosis in bone marrow-derived macrophages as measured by DNA fragmentation. In NZM mice, RNA and protein levels of PKCδ were significantly elevated in AM 14 wk after silica exposure. Therefore, rottlerin was used to reduce apoptosis of AM and evaluate the progress of silica-exacerbated systemic autoimmune disease. Fourteen weeks after silica exposure, NZM mice had increased levels of anti-histone autoantibodies, high proteinuria, and glomerulonephritis. However, silica-instilled mice that also received weekly instillations of rottlerin had significantly lower levels of proteinuria, anti-histone autoantibodies, complement C3, and IgG deposition within the kidney. Weekly instillations of rottlerin in silica-instilled NZM mice also inhibited the upregulation of PKCδ in AM. Together, these data demonstrate that in vivo treatment with rottlerin significantly decreased the exacerbation of autoimmunity by silica exposure.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lanlan Xi ◽  
Quanlin Liu ◽  
Wei Zhang ◽  
Linshan Luo ◽  
Jingfeng Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been reported to play vital roles in colorectal cancer (CRC). However, only a few circRNAs have been experimentally validated and functionally described. In this research, we aimed to reveal the functional mechanism of circCSPP1 in CRC. Methods 36 DOX sensitive and 36 resistant CRC cases participated in this study. The expression of circCSPP1, miR-944 and FZD7 were detected by quantitative real time polymerase chain reaction (qRT-PCR) and the protein levels of FZD7, MRP1, P-gp and LRP were detected by western blot. Cell proliferation, migration, invasion, and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, or flow cytometry analysis, respectively. The interaction between miR-944 and circCSPP1 or frizzled-7 (FZD7) was predicted by Starbase 3.0 and verified by the dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay. Xenograft tumor assay was performed to examine the effect of circCSPP1 on tumor growth in vivo. Results The expression of circCSPP1 and FZD7 was upregulated while miR-944 expression was downregulated in doxorubicin (DOX)-resistant CRC tissues and cells. CircCSPP1 knockdown significantly downregulated enhanced doxorubicin sensitivity, suppressed proliferation, migration, invasion, and induced apoptosis in DOX-resistant CRC cells. Interestingly, we found that circCSPP1 directly downregulated miR-944 expression and miR-944 decreased FZD7 level through targeting to 3′ untranslated region (UTR) of FZD7. Furthermore, circCSPP1 mediated DOX-resistant CRC cell progression and doxorubicin sensitivity by regulating miR-944/FZD7 axis. Besides, circCSPP1 downregulation dramatically repressed CRC tumor growth in vivo. Conclusion Our data indicated that circCSPP1 knockdown inhibited DOX-resistant CRC cell growth and enhanced doxorubicin sensitivity by miR-944/FZD7 axis, providing a potential target for CRC therapy.


1996 ◽  
Vol 183 (6) ◽  
pp. 2523-2531 ◽  
Author(s):  
M López-Hoyos ◽  
R Carrió ◽  
R Merino ◽  
L Buelta ◽  
S Izui ◽  
...  

The bcl-2 protooncogene has been shown to provide a survival signal to self-reactive B cells, but it fails to override their developmental arrest after encounter with antigen. Furthermore, constitutive expression of bcl-2 in B cells does not promote the development of autoimmune disease in most strains of mice, indicating that signals other than those conferred by bcl-2 are required for long-term survival and differentiation of self-reactive B cells in vivo. To further examine the factors that are required for the pathogenesis of autoimmune disease, we have assessed the effect of bcl-2 overexpression on the development of host-versus-graft disease, a self-limited model of systemic autoimmune disease. In this model, injection of spleen cells from (C57BL/6 x BALB/c)F1 hybrid mice into BALB/c newborn parental mice induces immunological tolerance to donor tissues and activation of autoreactive F1 donor B cells through interactions provided by allogeneic host CD4+ T cells. BALB/c newborns injected with spleen cells from (C57BL/6 x BALB/c)F1 mice expressing a bcl-2 transgene in B cells developed high levels of anti-single-stranded DNA and a wide range of pathogenic autoantibodies that were not or barely detectable in mice injected with nontransgenic spleen cells. In mice injected with transgenic B cells, the levels of pathogenic autoantibodies remained high during the course of the study and were associated with long-term persistence of donor B cells, development of a severe autoimmune disease, and accelerated mortality. These results demonstrate that bcl-2 can provide survival signals for the maintenance and differentiation of autoreactive B cells, and suggest that both increased B cell survival and T cell help play critical roles in the development of certain forms of systemic autoimmune disease.


1999 ◽  
Vol 276 (3) ◽  
pp. G647-G654 ◽  
Author(s):  
Claudine André ◽  
Dominique Couton ◽  
Jesintha Gaston ◽  
Loubna Erraji ◽  
Laurent Renia ◽  
...  

Stimulation of the cAMP-signaling pathway modulates apoptosis in several cell types and inhibits Jo2-mediated apoptosis in cultured rat hepatocytes. No information is yet available as to whether the hepatic β2-adrenergic receptor (AR) expression level, including β2-AR-dependent adenylyl cyclase activation, modulates hepatocyte sensitivity to apoptosis in vivo or whether this sensitivity can be modified by β2-AR ligands. We have examined this using C57BL/6 mice, in which hepatic β2-AR densities are low, and transgenic F28 mice, which overexpress β2-ARs and have elevated basal liver adenylyl cyclase activity. The F28 mice were resistant to Jo2-induced liver apoptosis and death. The β-AR antagonist propranolol sensitized the F28 livers to Jo2. In normal mice clenbuterol, a β2-AR-specific agonist, considerably reduced Jo2-induced liver apoptosis and death; salbutamol, another β2-AR-selective agonist, also reduced Jo2-induced apoptosis and retarded death but with less efficacy than clenbuterol; and propranolol blocked the protective effect of clenbuterol. This indicates that the expression level of functional β2-ARs modulates Fas-regulated liver apoptosis and that this apoptosis can be inhibited in vivo by giving β2-AR agonists. This may well form the basis for a new therapeutic approach to diseases involving abnormal apoptosis.


2005 ◽  
Vol 202 (2) ◽  
pp. 321-331 ◽  
Author(s):  
Sean R. Christensen ◽  
Michael Kashgarian ◽  
Lena Alexopoulou ◽  
Richard A. Flavell ◽  
Shizuo Akira ◽  
...  

Systemic autoimmune disease in humans and mice is characterized by loss of immunologic tolerance to a restricted set of self-nuclear antigens. Autoantigens, such as double-stranded (ds) DNA and the RNA-containing Smith antigen (Sm), may be selectively targeted in systemic lupus erythematosus because of their ability to activate a putative common receptor. Toll-like receptor 9 (TLR9), a receptor for CpG DNA, has been implicated in the activation of autoreactive B cells in vitro, but its role in promoting autoantibody production and disease in vivo has not been determined. We show that in TLR9-deficient lupus-prone mice, the generation of anti-dsDNA and antichromatin autoantibodies is specifically inhibited. Other autoantibodies, such as anti-Sm, are maintained and even increased in TLR9-deficient mice. In contrast, ablation of TLR3, a receptor for dsRNA, did not inhibit the formation of autoantibodies to either RNA- or DNA-containing antigens. Surprisingly, we found that despite the lack of anti-dsDNA autoantibodies in TLR9-deficient mice, there was no effect on the development of clinical autoimmune disease or nephritis. These results demonstrate a specific requirement for TLR9 in autoantibody formation in vivo and indicate a critical role for innate immune activation in autoimmunity.


2016 ◽  
Vol 44 (03) ◽  
pp. 637-661 ◽  
Author(s):  
Yin-Wen Shiue ◽  
Chi-Cheng Lu ◽  
Yu-Ping Hsiao ◽  
Ching-Lung Liao ◽  
Jing-Pin Lin ◽  
...  

Casticin, a polymethoxyflavone occurring in natural plants, has been shown to have anticancer activities. In the present study, we aims to investigate the anti-skin cancer activity of casticin on melanoma cells in vitro and the antitumor effect of casticin on human melanoma xenografts in nu/nu mice in vivo. A flow cytometric assay was performed to detect expression of viable cells, cell cycles, reactive oxygen species production, levels of [Formula: see text] and caspase activity. A Western blotting assay and confocal laser microscope examination were performed to detect expression of protein levels. In the in vitro studies, we found that casticin induced morphological cell changes and DNA condensation and damage, decreased the total viable cells, and induced G2/M phase arrest. Casticin promoted reactive oxygen species (ROS) production, decreased the level of [Formula: see text], and promoted caspase-3 activities in A375.S2 cells. The induced G2/M phase arrest indicated by the Western blotting assay showed that casticin promoted the expression of p53, p21 and CHK-1 proteins and inhibited the protein levels of Cdc25c, CDK-1, Cyclin A and B. The casticin-induced apoptosis indicated that casticin promoted pro-apoptotic proteins but inhibited anti-apoptotic proteins. These findings also were confirmed by the fact that casticin promoted the release of AIF and Endo G from mitochondria to cytosol. An electrophoretic mobility shift assay (EMSA) assay showed that casticin inhibited the NF-[Formula: see text]B binding DNA and that these effects were time-dependent. In the in vivo studies, results from immuno-deficient nu/nu mice bearing the A375.S2 tumor xenograft indicated that casticin significantly suppressed tumor growth based on tumor size and weight decreases. Early G2/M arrest and mitochondria-dependent signaling contributed to the apoptotic A375.S2 cell demise induced by casticin. In in vivo experiments, A375.S2 also efficaciously suppressed tumor volume in a xenotransplantation model. Therefore, casticin might be a potential therapeutic agent for the treatment of skin cancer in the future.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1422-1422
Author(s):  
Ulrich Keller ◽  
Juergen Huber ◽  
Jonas Nilsson ◽  
Mark Hall ◽  
Christian Peschel ◽  
...  

Abstract Rel/NF-kappaB transcription factors are mediators of immune responses, cell survival, and transformation, and are frequently deregulated in cancer. The NF-kappaB2 subunit is associated with chromosomal translocations or deletions in lymphoid malignancies, and deletion of the COOH-terminal ankyrin domain of NF-kappaB2 results in increased lymphocyte proliferation. Here, we report that activation of the Myc oncogene leads to suppression of Nfkb2 expression in early passage mouse embryonic fibroblasts and primary bone marrow-derived B cells. Accordingly, transgenic expression of c-Myc in the Eμ-Myc model of human Burkitt lymphoma results in reduced nfkb2 transcript and NF-kappaB2 p100 and p52 protein levels in pre-cancerous B cells. Nfkb2 expression is further reduced in the majority of Eμ-Myc lymphomas and in human Burkitt lymphoma. Nfkb2 suppression by Myc occurs at least in part by transcriptional repression as shown by promoter studies. To evaluate the relevance of Myc-mediated suppression of Nfkb2 for tumorigenesis, consequences of complete Nfkb2 loss were evaluated in vivo. In pre-cancerous B cells of Myc-transgenic mice, loss of Nfkb2 affects Myc-induced apoptosis while B cell proliferation is unaffected. Deletion of Nfkb2 results in an acceleration of lymphoma development in Eμ-Myc transgenic mice. Therefore, Myc-induced Nfkb2 suppression promotes lymphomagenesis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4825-4825
Author(s):  
Ana M Cosialls ◽  
Daniel Iglesias-Serret ◽  
Maria Piqué ◽  
Montserrat Barragán ◽  
Antonio F Santidrián ◽  
...  

Abstract Abstract 4825 Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in most cell types. We examined the mechanism of aspirin-induced apoptosis in human leukemia cells. Our results show that aspirin induced apoptosis in leukemia Jurkat T cells independently of NF-κB. Although aspirin induced p38 MAPK and c-Jun N-terminal kinase (JNK) activation, selective inhibitors of these kinases did not inhibit aspirin-induced apoptosis. We studied the regulation of Bcl-2 family members in aspirin-induced apoptosis. The mRNA levels of some pro-apoptotic members, such as BIM, NOXA, BMF or PUMA, were induced by aspirin. However, none of these pro-apoptotic proteins increased and the levels of Mcl-1 protein were reduced. Interestingly, in the presence of aspirin the protein levels of Noxa remained high. This alteration of the Mcl-1/Noxa balance was also found in other leukemia cell lines and primary chronic lymphocytic leukemia cells (CLL). Furthermore, in CLL cells aspirin induced an increase in the protein levels of Noxa. Knockdown of Noxa or Puma significantly attenuated aspirin-induced apoptosis. These results indicate that aspirin induces apoptosis through alteration of the Mcl-1/Noxa balance. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 1014-1022 ◽  
Author(s):  
Charles Perkins ◽  
Caryn N. Kim ◽  
Guofu Fang ◽  
Kapil N. Bhalla

We investigated the in vitro growth inhibitory and apoptotic effects of clinically achievable concentrations of As2O3 (0.5 to 2.0 μmol/L) against human myeloid leukemia cells known to be resistant to a number of apoptotic stimuli. These included chronic myelocytic leukemia (CML) blast crisis K562 and HL-60/Bcr-Abl cells, which contain p210 and p185 Bcr-Abl, respectively, and HL-60 cell types that overexpress Bcl-2 (HL-60/Bcl-2), Bcl-xL(HL-60/Bcl-xL), MDR (HL-60/VCR), or MRP (HL-60/AR) protein. The growth-inhibitory IC50 values for As2O3 treatment for 7 days against all these cell types ranged from 0.8 to 1.5 μmol/L. Exposure to 2 μmol/L As2O3 for 7 days induced apoptosis of all cell types, including HL-60/Bcr-Abl and K562 cells. This was associated with the cytosolic accumulation of cyt c and preapoptotic mitochondrial events, such as the loss of inner membrane potential (▵Ψm) and the increase in reactive oxygen species (ROS). Treatment with As2O3 (2 μmol/L) generated the activities of caspases, which produced the cleavage of the BH3 domain containing proapoptotic Bid protein and poly (ADP-ribose) polymerase. Significantly, As2O3-induced apoptosis of HL-60/Bcr-Abl and K562 cells was associated with a decline in Bcr-Abl protein levels, without any significant alterations in the levels of Bcl-xL, Bax, Apaf-1, Fas, and FasL. Although As2O3 treatment caused a marked increase in the expression of the myeloid differentiation marker CD11b, it did not affect Hb levels in HL-60/Bcr-Abl, K562, or HL-60/neo cells. However, in these cells, As2O3 potently induced hyper-acetylation of the histones H3 and H4. These findings characterize As2O3 as a growth inhibiting and apoptosis-inducing agent against a variety of myeloid leukemia cells resistant to multiple apoptotic stimuli.


Blood ◽  
2003 ◽  
Vol 101 (8) ◽  
pp. 3236-3239 ◽  
Author(s):  
Ramadevi Nimmanapalli ◽  
Lianne Fuino ◽  
Corinne Stobaugh ◽  
Victoria Richon ◽  
Kapil Bhalla

Abstract Here we demonstrate that treatment with SAHA (suberoylanilide hydroxamic acid), a known inhibitor of histone deacetylases (HDACs), alone induced p21 and/or p27 expressions but decreased the mRNA and protein levels of Bcr-Abl, which was associated with apoptosis of Bcr-Abl–expressing K562 and LAMA-84 cells. Cotreatment with SAHA and imatinib (Gleevec) caused more down-regulation of the levels and auto-tyrosine phosphorylation of Bcr-Abl and apoptosis of these cell types, as compared with treatment with either agent alone (P < .05). This finding was also associated with a greater decline in the levels of phospho-AKT and Bcl-xL. Significantly, treatment with SAHA also down-regulated Bcr-Abl levels and induced apoptosis of CD34+ leukemia blast progenitor cells derived from patients who had developed progressive blast crisis (BC) of chronic myelocytic leukemia (CML) while receiving therapy with imatinib. Taken together, these findings indicate that cotreatment with SAHA enhances the cytotoxic effects of imatinib and may have activity against imatinib-refractory CML-BC.


Sign in / Sign up

Export Citation Format

Share Document