scholarly journals CFTR is required for maximal transepithelial liquid transport in pig alveolar epithelia

2012 ◽  
Vol 303 (2) ◽  
pp. L152-L160 ◽  
Author(s):  
Xiaopeng Li ◽  
Alejandro P. Comellas ◽  
Philip H. Karp ◽  
Sarah E. Ernst ◽  
Thomas O. Moninger ◽  
...  

A balance between alveolar liquid absorption and secretion is critical for maintaining optimal alveolar subphase liquid height and facilitating gas exchange in the alveolar space. However, the role of cystic fibrosis transmembrane regulator protein (CFTR) in this homeostatic process has remained elusive. Using a newly developed porcine model of cystic fibrosis, in which CFTR is absent, we investigated ion transport properties and alveolar liquid transport in isolated type II alveolar epithelial cells (T2AECs) cultured at the air-liquid interface. CFTR was distributed exclusively to the apical surface of cultured T2AECs. Alveolar epithelia from CFTR−/− pigs failed to increase liquid absorption in response to agents that increase cAMP, whereas cAMP-stimulated liquid absorption in CFTR+/− epithelia was similar to that in CFTR+/+ epithelia. Expression of recombinant CFTR restored stimulated liquid absorption in CFTR−/− T2AECs but had no effect on CFTR+/+ epithelia. In ex vivo studies of nonperfused lungs, stimulated liquid absorption was defective in CFTR−/− alveolar epithelia but similar between CFTR+/+ and CFTR+/− epithelia. When epithelia were studied at the air-liquid interface, elevating cAMP levels increased subphase liquid height in CFTR+/+ but not in CFTR−/− T2AECs. Our findings demonstrate that CFTR is required for maximal liquid absorption under cAMP stimulation, but it is not the rate-limiting factor. Furthermore, our data define a role for CFTR in liquid secretion by T2AECs. These insights may help to develop new treatment strategies for pulmonary edema and respiratory distress syndrome, diseases in which lung liquid transport is disrupted.

1994 ◽  
Vol 266 (4) ◽  
pp. L397-L404 ◽  
Author(s):  
L. A. Cohn ◽  
V. L. Kinnula ◽  
K. B. Adler

Guinea pig tracheal epithelial (GPTE) cells in primary air/liquid interface culture were exposed to H2O2, and the rate of H2O2 consumption by apical and basolateral surfaces was measured. GPTE cells had potent H2O2 scavenging ability, with faster consumption of H2O2 from the apical surface. Inhibition of catalase (Cat) with sodium azide (NaAz) significantly attenuated the ability of GPTE cells to remove higher concentrations of H2O2. Depletion of reduced glutathione, the substrate for glutathione peroxidase (GPO), with DL-buthionine-[S,R]-sulfoximine (BSO) did not affect consumption of H2O2. Dissolution of mucus from the cells reduced scavenging activity of the cultures and basement membrane/extracellular matrix material (BM/ECM) deposited by the cells demonstrated significant H2O2-scavenging activity. The results suggest that GPTE cells retain antioxidant capability in vitro when cultured in an air/liquid interface. This capacity to scavenge H2O2 appears to rely on Cat, as well as on mucus and BM/ECM material. However, a significant amount of H2O2 scavenging appears to depend on other, yet unidentified, antioxidant system(s).


2022 ◽  
Vol 23 (2) ◽  
pp. 835
Author(s):  
Bang M. Tran ◽  
Samantha L. Grimley ◽  
Julie L. McAuley ◽  
Abderrahman Hachani ◽  
Linda Earnest ◽  
...  

The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air–liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.


2013 ◽  
Vol 27 (8) ◽  
pp. 2342-2349 ◽  
Author(s):  
Ingeborg M. Kooter ◽  
Marcel J. Alblas ◽  
Aleksandra D. Jedynska ◽  
Maaike Steenhof ◽  
Marc M.G. Houtzager ◽  
...  

1987 ◽  
Vol 62 (2) ◽  
pp. 781-784 ◽  
Author(s):  
J. U. Raj ◽  
R. L. Conhaim ◽  
J. Bhattacharya

We have investigated the mechanism of alveolar liquid filling in pulmonary edema. We excised, degassed, and intrabronchially filled 14 dog lung lobes from nine dogs with 75, 150, 225, or 350 ml of 5% albumin solution, and then air inflated the lobes to a constant airway pressure of 25 cmH2O. By use of micropipettes, we punctured subpleural alveoli to measure alveolar liquid pressure by the servo-null technique. Alveolar liquid pressure was constant in all lobes despite differences in lobe liquid volume and averaged 10.6 +/- 1.3 cmH2O. Thus, in all lobes a constant pressure drop of 14.4 cmH2O existed from airway to alveolar liquid across the air-liquid interface. We attribute this finding, on the basis of the Laplace equation, to an air-liquid interface of constant radius in all the lobes. In fact, we calculated from the Laplace equation an air-liquid interface radius which equalled morphological estimates of alveolar radius. We conclude that in the steady state, alveoli that contained liquid have a constant radius of curvature of the air-liquid interface possibly because they are always completely liquid filled.


2019 ◽  
Vol 58 ◽  
pp. 78-85 ◽  
Author(s):  
Bruna Ferreira Tollstadius ◽  
Artur Christian Garcia da Silva ◽  
Bruna Cristiane Oliveira Pedralli ◽  
Marize Campos Valadares

2021 ◽  
Author(s):  
Shaorui Ke ◽  
Qi Liu ◽  
Xinlian Zhang ◽  
Yuhan Yao ◽  
Xudong Yang ◽  
...  

Abstract BackgroundExposure to indoor air pollution from solid fuels combustion is associated with lung diseases and cancer. This study aimed to explore the cytotoxicity and molecular mechanisms of biomass combustion-derived particles in human pulmonary alveolar epithelial cells (HPAEpiC) using a platform that combines air-liquid-interface (ALI) and dynamic culture (DC) systems.MethodsHPAEpiC were cultured on the surface of polycarbonate (PC) membranes in ALI-DC platform. The top surface of cells was sprayed with a solution of biomass combustion soluble constituents (BCSCs) and simultaneously nourished with medium flowing from below PC membranes. BCSC particles' morphology and dosages deposited on the chip was determined for particle characterization. A flow cytometer, laser scanning confocal microscopy (LSCM), and transmission electron microscope (TEM) were used to investigate the apoptosis of HPAEpiC and the changes in the ultrastructure of HPAEpiC induced by BCSCs. Additionally, the underlying apoptotic pathway was studied through the determination of the protein expression levels by western blotting.ResultsScanning electron microscope (SEM) results demonstrated that the sample processing and delivering approach were very suitable for pollutant exposure of the platform. The decline in cell viability and increase in apoptosis rate after exposure to similar doses of BCSCs were more under ALI-DC conditions than under submerged conditions. This indicated that the ALI-DC platform is a superior system for investigating cytotoxicity of indoor air pollutants in lung cells. The morphology and ultrastructure of the cells were damaged after exposure to BCSCs. Our results demonstrated that the p53 pathway was activated after exposure of cells cultured using this platform to BCSCs. This further decreased the Bcl-2/Bax ratio thereby activating the expression of caspase-9 and caspase-3, which in turn induced apoptosis in HPAEpiC. Additionally, antioxidants (N-acetyl-cysteine; NAC) could significantly alleviate the cytotoxicity induced by BCSCs.ConclusionsA novel ALI-DC platform was successfully presented to study cytotoxicity of air pollution on lung cells. Based on the platform, the BCSCs was demonstrated that it could damage mitochondria, produce ROS, and activate p53 in HPAEpiC. Furthermore, BCSCs decreased the Bcl-2/Bax ratio and efficiently upregulated the expression of cleaved caspases-9 and − 3, ultimately inducing apoptosis.


Sign in / Sign up

Export Citation Format

Share Document