Uridine adenosine tetraphosphate induces contraction of airway smooth muscle

2011 ◽  
Vol 301 (5) ◽  
pp. L789-L794 ◽  
Author(s):  
Yu Gui ◽  
ZengYong Wang ◽  
XiaoRui Sun ◽  
Michael P. Walsh ◽  
Jing-Jing Li ◽  
...  

Contraction of airway smooth muscle (ASM) plays an important role in the regulation of air flow and is potentially involved in the pathophysiology of certain respiratory diseases. Extracellular nucleotides regulate ASM contraction via purinergic receptors, but the signaling mechanisms involved are not fully understood. Uridine adenosine tetraphosphate (Up4A) contains both pyrimidine and purine moieties, which are known to potentially activate P2X and P2Y receptors. Both P2X and P2Y receptors have been identified in the lung, including airway epithelial cells and ASM. We report here a study of purinergic signaling in the respiratory system, with a focus on the effect of Up4A on ASM contraction. Up4A induced contraction of rat isolated trachea and extrapulmonary bronchi as well as human intrapulmonary bronchioles. Up4A-induced contraction was blocked by di-inosine pentaphosphate, a P2X antagonist, but not by suramin, a nonselective P2 antagonist. Up4A-induced contraction was also attenuated by α,β-methylene-ATP-mediated P2X receptor desensitization. Several P2X receptors were detected at the mRNA level: P2X1, P2X4, P2X6, and P2X7, and to a lesser extent P2X3. Furthermore, the Up4A response was inhibited by removal of extracellular Ca2+ and by the presence of the L-type Ca2+ channel blocker, nifedipine, or the Rho-associated kinase inhibitor, H1152. We conclude that Up4A stimulates ASM contraction, and the underlying signaling mechanism appears to involve P2X (most likely P2X1) receptors, extracellular Ca2+ entry via L-type Ca2+ channels, and Ca2+ sensitization through the RhoA/Rho-associated kinase pathway. This study will add to our understanding of the pathophysiological roles of extracellular nucleotides in the lung.

2015 ◽  
Vol 20 (5) ◽  
Author(s):  
Kamila Puchałowicz ◽  
Irena Baranowska-Bosiacka ◽  
Violetta Dziedziejko ◽  
Dariusz Chlubek

AbstractPurinergic signaling in the nervous system has been the focus of a considerable number of studies since the 1970s. The P2X and P2Y receptors are involved in the initiation of purinergic signaling. They are very abundant in the central and peripheral nervous systems, where they are expressed on the surface of neurons and glial cells - microglia, astrocytes, oligodendrocytes and Schwann cells and the precursors of the latter two. Their ligands - extracellular nucleotides - are released in the physiological state by astrocytes and neurons forming synaptic connections, and are essential for the proper functioning of nervous system cells. Purinergic signaling plays a crucial role in neuromodulation, neurotransmission, myelination in the CNS and PNS, intercellular communication, the regulation of ramified microglia activity, the induction of the response to damaging agents, the modulation of synaptic activity and other glial cells by astrocytes, and the induction of astrogliosis. Understanding these mechanisms and the fact that P2 receptors and their ligands are involved in the pathogenesis of diseases of the nervous system may help in the design of drugs with different and more effective mechanisms of action.


2003 ◽  
Vol 284 (6) ◽  
pp. L1020-L1026 ◽  
Author(s):  
Stephen M. Carlin ◽  
Michael Roth ◽  
Judith L. Black

We investigated the chemotactic action of PDGF and urokinase on human airway smooth muscle (HASM) cells in culture. Cells were put in collagen-coated transwells with 8-μm perforations, incubated for 4 h with test compounds, then fixed, stained, and counted as migrated nuclei by microscopy. Cells from all culture conditions showed some basal migration (migration in the absence of stimuli during the assay), but cells preincubated for 24 h in 10% FBS or 20 ng/ml PDGF showed higher basal migration than cells quiesced in 1% FBS. PDGFBB, PDGFAA, and PDGFABwere all chemotactic when added during the assay. PDGF chemotaxis was blocked by the phosphatidyl 3′-kinase inhibitor LY-294002, the MEK inhibitor U-0126, PGE2, formoterol, pertussis toxin, and the Rho kinase inhibitor Y-27632. Urokinase alone had no stimulatory effect on migration of quiescent cells but caused a dose-dependent potentiation of chemotaxis toward PDGF. Urokinase also potentiated the elevated basal migration of cells pretreated in 10% FBS or PDGF. This potentiating effect of urokinase appears to be novel. We conclude that PDGF and similar cytokines may be important factors in airway remodeling by redistribution of smooth muscle cells during inflammation and that urokinase may be important in potentiating the response.


2011 ◽  
Vol 462 (4) ◽  
pp. 573-585 ◽  
Author(s):  
Luis M. Montaño ◽  
José E. Cruz-Valderrama ◽  
Alejandra Figueroa ◽  
Edgar Flores-Soto ◽  
Luz M. García-Hernández ◽  
...  

2016 ◽  
Vol 311 (2) ◽  
pp. L421-L432 ◽  
Author(s):  
Sarah K. Sasse ◽  
Mohammed O. Altonsy ◽  
Vineela Kadiyala ◽  
Gaoyuan Cao ◽  
Reynold A. Panettieri ◽  
...  

Airway smooth muscle is a major target tissue for glucocorticoid (GC)-based asthma therapies, however, molecular mechanisms through which the GC receptor (GR) exerts therapeutic effects in this key airway cell type have not been fully elucidated. We previously identified the nuclear factor-κB (NF-κB) inhibitor, A20 (TNFAIP3), as a mediator of cytokine repression by glucocorticoids (GCs) in airway epithelial cells and defined cooperative regulation of anti-inflammatory genes by GR and NF-κB as a key mechanistic underpinning of airway epithelial GR function. Here, we expand on these findings to determine whether a similar mechanism is operational in human airway smooth muscle (HASM). Using HASM cells derived from normal and fatal asthma samples as an in vitro model, we demonstrate that GCs spare or augment TNF-mediated induction of A20 ( TNFAIP3), TNIP1, and NFKBIA, all implicated in negative feedback control of NF-κB-driven inflammatory processes. We applied chromatin immunoprecipitation and reporter analysis to show that GR and NF-κB directly regulate A20 expression in HASM through cooperative induction of an intronic enhancer. Using overexpression, we show for the first time that A20 and its interacting partner, TNIP1, repress TNF signaling in HASM cells. Moreover, we applied small interfering RNA-based gene knockdown to demonstrate that A20 is required for maximal cytokine repression by GCs in HASM. Taken together, our data suggest that inductive regulation of A20 by GR and NF-κB contributes to cytokine repression in HASM.


2016 ◽  
Vol 97 (3) ◽  
pp. 414-421
Author(s):  
B A Ziganshin ◽  
A A Spasov ◽  
A P Ziganshina ◽  
R K Dzhordzhikiya ◽  
A U Ziganshin

P2 receptors, the main endogenous agonist of which is adenosine triphosphate (ATP), are widely distributed in mammalian tissues and organs, including the cardiovascular system. In human blood vessels, various types of the P2Y (metabotropic, G-protein coupled receptors) and P2X (ligand-gated ion channels) family of receptors are present. Several subtypes of P2X and P2Y receptors have been found on the surface of endothelial cells as well as smooth muscle cells of the vessels. Activation of various subtypes of P2 receptors located in different cells of the blood vessel can have multidirectional action on the tone of the vessel’s wall, thereby causing both vasoconstriction and vasodilatation. To date, two main physiologic mechanisms have been identified, via which Р2 receptors participate in controlling the vascular tone: (1) neuronal - ATP is released as a co-transmitter from perivascular sympathetic nerve terminals and activates P2 receptors located on vascular smooth muscle cells; (2) endothelial - ATP is released into the vessel’s lumen by endothelial cells and blood cells and activates P2 receptors located on the endothelial cells. In the first mechanism, simultaneous release of ATP and norepinephrine from sympathetic nerve terminals results in vasoconstriction caused by rapid depolarization, which is completely inhibited by P2X receptor antagonists, and slow depolarization, which is inhibited by alpha-adrenergic blockers. In the second mechanism, during shear stress and hypoxic conditions, ATP activates P2 receptors of endothelial cells causing vasodilatation. These differing effects, mediated via P2 receptors, make it very tempting to develop novel drugs that would regulate vascular tone via these receptors.


1995 ◽  
Vol 269 (1) ◽  
pp. H30-H36 ◽  
Author(s):  
P. Pacaud ◽  
R. Malam-Souley ◽  
G. Loirand ◽  
C. Desgranges

In vascular smooth muscle, extracellular ATP induces an increase in intracellular [Ca2+] ([Ca2+]i). Various agonists have been used to characterize P2-purinoceptor subtypes involved in the ATP-induced [Ca2+]i rise, measured by indo 1 fluorescence, in both freshly isolated and cultured rat aortic smooth muscle cells. alpha, beta-Methylene-ATP increased [Ca2+]i via Ca2+ entry through P2x-receptor channels in freshly isolated but not in cultured cells. 2-Methylthio-ATP and ADP failed to release Ca2+ via P2y-receptor activation in freshly isolated cells, whereas such a response was obtained in cultured cells. UTP, by stimulating P2u receptors, released Ca2+ from intracellular stores in both freshly isolated and cultured cells. These results suggest that, in the course of the culture process, P2x-receptor activation-induced responses were lost, whereas P2y-receptor activation-induced [Ca2+]i rise appeared, these two phenomena being independent. Responses to P2x-receptor agonist were lost in all culture conditions, whereas functional P2y receptors appeared only in cells that were stimulated with serum to induce cell cycle progression. The phenotypic modulation of vascular myocytes was therefore associated with a change in the functional P2-purinoceptor subtypes.


2009 ◽  
Vol 297 (4) ◽  
pp. L698-L705 ◽  
Author(s):  
Isabelle Labonté ◽  
Muhannad Hassan ◽  
Paul-André Risse ◽  
Kimitake Tsuchiya ◽  
Michel Laviolette ◽  
...  

The effects of remodeling of airway smooth muscle (SM) by hyperplasia on airway SM contractility in vivo are poorly explored. The aim of this study was to investigate the relationship between allergen-induced airway SM hyperplasia and its contractile phenotype. Brown Norway rats were sensitized with ovalbumin (OVA) or saline on day 0 and then either OVA-challenged once on day 14 and killed 24 h later or OVA-challenged 3 times (on days 14, 19, and 24) and killed 2 or 7 days later. Changes in SM mass, expression of total myosin, SM myosin heavy chain fast isoform (SM-B) and myosin light chain kinase (MLCK), tracheal contractions ex vivo, and airway responsiveness to methacholine (MCh) in vivo were assessed. One day after a single OVA challenge, the number of SM cells positive for PCNA was greater than for control animals, whereas the SM mass, contractile phenotype, and tracheal contractility were unchanged. Two days after three challenges, SM mass and PCNA immunoreactive cells were increased (3- and 10-fold, respectively; P < 0.05), but airway responsiveness to MCh was unaffected. Lower expression in total myosin, SM-B, and MLCK was observed at the mRNA level ( P < 0.05), and total myosin and MLCK expression were lower at the protein level ( P < 0.05) after normalization for SM mass. Normalized tracheal SM force generation was also significantly lower 2 days after repeated challenges ( P < 0.05). Seven days after repeated challenges, features of remodeling were restored toward control levels. Allergen-induced hyperplasia of SM cells was associated with a loss of contractile phenotype, which was offset by the increase in mass.


Sign in / Sign up

Export Citation Format

Share Document